岩土力学 ›› 2023, Vol. 44 ›› Issue (8): 2249-2265.doi: 10.16285/j.rsm.2022.1807

• 基础理论与实验研究 • 上一篇    下一篇

基于单轴压缩试验的不同风化程度花岗岩分形特征分析

王洪建1,崔炎宗1,袁广祥1,赵菲1,张翼宇1,黄志全2   

  1. 1. 华北水利水电大学 地球科学与工程学院,河南 郑州 450046;2. 洛阳理工学院 计算机与信息工程学院,河南 洛阳 471023
  • 收稿日期:2022-11-19 接受日期:2023-05-24 出版日期:2023-08-21 发布日期:2023-08-21
  • 通讯作者: 黄志全,男,1970年生,博士,教授,博士生导师,主要从事岩土及地质灾害防治方面研究。E-mail: huangzhiquan_183@126.com E-mail:whj_1986@sina.cn
  • 作者简介:王洪建,男,1986年生,博士,副教授,主要从事岩石力学方面的研究。
  • 基金资助:
    国家重点研发计划(No. 2019YFC1509703);河南省重点研发专项(No. 221111321500);国家自然科学基金(No. 41807254,No. 51704120);河南省青年人才托举工程项目(No. 2021HYTP013)

Fractal characteristics analysis of granite with different weathering degrees based on uniaxial compression experiment

WANG Hong-jian1, CUI Yan-zong1, YUAN Guang-xiang1, ZHAO Fei1, ZHANG Yi-yu1, HUANG Zhi-quan2   

  1. 1. College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China; 2. School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
  • Received:2022-11-19 Accepted:2023-05-24 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Key Research and Development Project (2019YFC1509704), the Key Research and Development Project of Henan Province (221111321500), the National Natural Science Foundation of China (41807254, 51704120) and the Young Talent Support Project of Henan Province (2021HYTP013).

摘要: 风化花岗岩物理力学性质的弱化给工程稳定性带来很大影响,因此,研究不同风化程度花岗岩的破坏特性具有重要意义。利用河南五岳抽水蓄能电站库区采集的风化花岗岩,结合现场岩芯特征的定性描述及波速比定量评价指标,划分出了微、弱、强3种不同风化程度的花岗岩;对单轴压缩破坏后产生的碎屑进行质量和尺度的特征分析,在此基础上建立了碎屑分形维数值与波速比之间的对应关系,并利用MATLAB对花岗岩破坏后主破裂表面裂缝进行分形维数计算。结果表明:风化试样产生的碎屑以粗粒组为主,且随风化程度增强,粗粒组碎屑质量占比逐渐增大;强风化岩石碎屑长厚比分布范围小,块状碎屑占比低,破坏动力学特性不明显,其形状更单一,主要以板状为主;随着风化程度的降低,块状碎屑含量增多,岩石动力学破坏特征增强,碎屑分形维数随着表征风化程度波速比的增大而呈增大趋势;相较于碎屑质量、宽度和厚度,碎屑数量和长度是影响碎屑分形维数的主控因素,是反映不同风化程度花岗岩破碎分形特征的主要参量;强风化类组花岗岩表面裂缝分形随波速比变化不明显,而弱风化、微风化花岗岩的裂缝分形维数随波速比增大而呈显著增大趋势,说明其自相似程度更高,形状更复杂,而在裂缝形成过程中所需要的能量也更多。

关键词: 花岗岩, 风化程度, 分形维数, 波速比, 碎屑特征, 裂缝形态

Abstract: The weakening of physical and mechanical properties of weathered granite often has a great impact on engineering stability. Therefore, it is of great significance to study the failure characteristics of granite with different weathering degrees. Combining the qualitative description of the core characteristics and the quantitative evaluation index of wave velocity ratio, the granite rocks collected from the reservoir area of Wuyue Pumped Storage Power Station in Henan Province were divided into three groups: slightly weathered granite, weakly weathered granite and strongly weathered granite. The fragments generated from granite rocks during uniaxial compression tests were collected, and their quality and scale characteristics were analyzed. Then, the corresponding relationship between fragment fractal dimension and wave velocity ratio was established. Meanwhile, the MATLAB software was employed to calculate the fractal dimension of the cracks on the main rupture surface. The results show that weathered granite rocks mainly produce coarse grain fragments and the proportion of fragments in coarse group gradually increases with the increase of weathering degree. Strongly weathered rocks produce blocky fragments in a small proportion and have a narrow range of the length-thickness ratio, indicating weak dynamic failure characteristics. Besides, their fragment shapes are single and mainly have plate-like structure. With the decrease of weathering degree, the proportions of blocky fragments increase and the dynamic failure characteristics become more apparent. The fractal dimensions of fragments have an increasing trend with the increase of the wave velocity ratio. Compared with the fragment quality, width and thickness, the fragment quantity and length are the main factors affecting the fractal dimension and are also the main parameters reflecting the fractal characteristics of granite with different weathering degrees. Moreover, the crack fractal dimensions of rupture surface for weakly and slightly weathered granite rocks increase significantly with the increase of wave velocity ratio, while for strongly weathered granite rocks there is no obvious change. It implies that the cracks of weakly and slightly weathered granite rocks have a higher degree of self-similarity, more complex structure and require more energy for their initiation and propagation

Key words: granite, weathering degree, fractal dimension, wave velocity ratio, fragment characteristics, crack morphology

中图分类号: 

  • TU 45
[1] 辛子朋, 柴肇云, 孙浩程, 李天宇, 刘新雨, 段碧英. 砂质泥岩峰后破裂承载特征与块体分布规律研究[J]. 岩土力学, 2023, 44(8): 2369-2380.
[2] 熊超, 黄中伟, 王立超, 史怀忠, 赫文豪, 陈振良, 李根生, . 锥形聚晶金刚石复合片齿破岩特征与机制研究[J]. 岩土力学, 2023, 44(8): 2432-2444.
[3] 于洋, 王泽华, 唐才萱. 单轴压缩下酸腐蚀花岗岩能量演化与分形特征[J]. 岩土力学, 2023, 44(7): 1971-1982.
[4] 王春, 胡慢谷, 王成, . 热−水−力作用下圆孔花岗岩的动态损伤特征及结构模型[J]. 岩土力学, 2023, 44(3): 741-756.
[5] 舒荣军, 孔令伟, 周振华, 简涛, 李甜果, . 卸荷-增孔压条件下花岗岩残积土的力学特性[J]. 岩土力学, 2023, 44(2): 473-482.
[6] 冯晨, 李江山, 刘金都, 薛强, . 砷、镉复合污染土击实特性及微观结构试验研究[J]. 岩土力学, 2022, 43(S2): 171-182.
[7] 王立, 倪彬, 谢伟, 王书昭, 寇坤, 赵奎, . 不同粒径黄砂岩微观−宏观裂纹演化机制研究[J]. 岩土力学, 2022, 43(S2): 373-381.
[8] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[9] 汪洋, 陈文化. 基于裂隙形状函数的自然环境高温下花岗岩 裂隙尖部非线性温度场[J]. 岩土力学, 2022, 43(S1): 267-274.
[10] 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, . 离散裂隙网络对岩石力学性质和声发射特性 影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552.
[11] 王炀, 刘冬桥, 任富强, 胡天祥, 何满潮, . 动载与长轴位置关系对椭圆形洞室围岩冲 击岩爆影响试验研究[J]. 岩土力学, 2022, 43(9): 2347-2359.
[12] 汤连生, 王昊, 孙银磊, 刘其鑫, . 干湿过程中花岗岩残积土抗拉强度变化研究[J]. 岩土力学, 2022, 43(7): 1749-1760.
[13] 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545.
[14] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[15] 薛卉, 舒彪, 陈君洁, 路伟, 胡永鹏, 王益民, 曾凡, 黄若宸, . 高温高压下超临界二氧化碳作用对花岗岩 力学性质影响的试验研究[J]. 岩土力学, 2022, 43(2): 377-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[3] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[4] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[5] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[6] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[7] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[8] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[9] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[10] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .