岩土力学 ›› 2023, Vol. 44 ›› Issue (11): 3261-3271.doi: 10.16285/j.rsm.2022.1862

• 基础理论与实验研究 • 上一篇    下一篇

深海超软土动剪切模量与阻尼比特性研究

王奕霖1,李飒1,段贵娟2,李怀亮3,赵福臣3   

  1. 1. 天津大学 建筑工程学院,天津 300072;2. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122; 3. 海洋石油工程股份有限公司,天津 300461
  • 收稿日期:2022-11-29 接受日期:2023-03-15 出版日期:2023-11-28 发布日期:2023-11-29
  • 通讯作者: 李飒,女,1970年生,博士,教授,博士生导师,主要从事海洋土的工程性质、海洋工程等方面的研究与教学工作。E-mail: lisa@tju.edu.cn E-mail:wangyl9902@163.com
  • 作者简介:王奕霖,男,1999年生,硕士研究生,主要从事海洋土性质和土动力学方面的研究。
  • 基金资助:
    国家自然科学基金面上项目(No. 42072294)

Dynamic shear modulus and damping ratio of deep-sea ultra-soft soil

WANG Yi-lin1, LI Sa1, DUAN Gui-juan2, LI Huai-liang3, ZHAO Fu-chen3   

  1. 1. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Power China Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 311100, China; 3. Offshore Oil Engineering Co., Ltd., Tianjin 300452, China
  • Received:2022-11-29 Accepted:2023-03-15 Online:2023-11-28 Published:2023-11-29
  • Supported by:
    This work was supported by the National Natural Science Foundation Project (42072294).

摘要:

海底表层的结构物在使用中可能受到动荷载作用,为保证其的长期稳定性,有必要对海床表层的深海超软土动力学特性展开研究。使用Anton Paar MCR302流变仪,采用应变控制模式,对含水率高于液限的深海超软土进行动态剪切测试,研究动态流变参数、动剪切模量G和阻尼比l的变化规律。结果表明,随着剪切应变的增大,深海超软土的变形由可恢复的弹性变形主导逐渐过渡为不可恢复的黏性变形主导。通过建立动态流变参数与动剪切模量G和阻尼比l的关系,探讨了深海超软土的动力特性。根据深海超软土动剪切模量G的变化特征,提出了峰值参考应变的概念,建立了最大动剪模量Gmax与归一化含水率w/wpw为含水率,wp为塑性含水率)的关系。结果还显示,相较于常规黏土,深海超软土的G/Gmax-γγ 为剪切应变)曲线衰减较快,且受塑性指数影响较小。深海超软土的阻尼比整体偏高,并随剪切应变的增大快速上升。根据试验结果,给出描述深海超软土G/Gmax-γλ-γ 曲线的数学模型。

关键词: 深海超软土, 流变仪, 动态流变参数, 动剪切模量, 阻尼比, 含水率

Abstract:

Seabed surface structures may be subjected to dynamic loads. In order to ensure the long-term stability of them, it is crucial to study the dynamic characteristics of deep-sea ultra-soft soil at seabed surface. Oscillatory shear tests were carried out on deep-sea ultra-soft soil with water content beyond liquid limit by an Anton Paar MCR302 rheometer with strain control mode. The variations of dynamic rheological parameters, dynamic shear modulus G and damping ratio l were studied. The test results showed that with the increase of shear strain, the deformation of deep-sea ultra-soft soil was dominated by recoverable elastic deformation and gradually transited to unrecoverable viscous deformation. By establishing the relationship between dynamic rheological parameters and dynamic shear modulus G and damping ratio l, the dynamic characteristics of deep-sea ultra-soft soil were discussed. According to the features of dynamic shear modulus G of deep-sea ultra-soft soil, the concept of peak reference strain was proposed, and the relationship between maximum dynamic shear modulus Gmax and normalized water content w/wp (w is the moisture content, wp is plastic moisture content) was established. Compared with conventional clay, the G/Gmax-γ (γ is shear strain)curve of deep-sea ultra-soft soil decreased faster and was less affected by plasticity index. The damping ratio of deep-sea ultra-soft soil was generally high, and increased rapidly with the increase of shear strain. Based on the experimental results, models suitable for describing G/Gmax-γand λ-γ curves of deep-sea ultra-soft soil were proposed.

Key words: deep-sea ultra-soft soil, rheometer, dynamic rheological parameters, dynamic shear modulus, damping ratio, water content

中图分类号: 

  • TU 411
[1] 彭宇, 张虎元, 周光平, 谭煜, . 酒精湿化法调配压实膨润土缓冲回填材料含水率研究[J]. 岩土力学, 2024, 45(1): 235-244.
[2] 刘德仁, 张转军, 王旭, 张艳丰, 安政山, 金芯, . 水蒸汽增湿重塑非饱和黄土地基现场应用参数研究[J]. 岩土力学, 2023, 44(增刊): 73-82.
[3] 陈国兴, 韩勇, 梁珂, . 徐州城区黏性土与粉土的动剪切模量与阻尼比特性[J]. 岩土力学, 2023, 44(增刊): 163-172.
[4] 刘杰锋, 李飒, 段贵娟, 王奕霖, . 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型[J]. 岩土力学, 2023, 44(增刊): 341-349.
[5] 王盛年, 苏俊, 郭双枫, 谷雷雷, 陈泽玮, 赵凯, . 地聚物稳定粗粒填料静动力学特性试验研究[J]. 岩土力学, 2023, 44(增刊): 350-364.
[6] 瞿茹, 朱长歧, 刘海峰, 王天民, 马成昊, 王星, . 珊瑚砂界限干密度确定方法的比较研究[J]. 岩土力学, 2023, 44(增刊): 461-475.
[7] 冉宇玲, 柏巍, 孔令伟, 李雪梅, 樊恒辉, 杨秀娟, . 基于频域反射的细粒土压实度检测方法与误差评估[J]. 岩土力学, 2023, 44(8): 2458-2470.
[8] 张延杰, 何萌, 宋萌, 曹立, 赵海涛, 李梅. 富水砂卵石地层力学特性研究[J]. 岩土力学, 2023, 44(6): 1739-1747.
[9] 孙晓明, 姜铭, 王新波, 臧金诚, 高祥, 缪澄宇, . 万福煤矿不同含水率砂岩蠕变力学特性试验研究[J]. 岩土力学, 2023, 44(3): 624-636.
[10] 彭赟, 胡明鉴, 阿颖, 王雪晴, . 珊瑚砂热物理参数测试与预测模型对比分析[J]. 岩土力学, 2023, 44(3): 884-895.
[11] 郎瑞卿, 裴璐熹, 孙立强, 周龙, 李恒. 新拌不同液限淤泥固化土流动性试验研究[J]. 岩土力学, 2023, 44(10): 2789-2797.
[12] 庄心善, 周荣, 周睦凯, 陶高梁, 金合意. 孔隙溶液对循环荷载作用下膨胀土 累积变形及阻尼比影响研究[J]. 岩土力学, 2022, 43(S2): 1-10.
[13] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[14] 刘汉香, 别鹏飞, 李欣, 魏应松, 王铭萱, . 三轴多级循环加卸载下千枚岩的力学特性及 能量耗散特征研究[J]. 岩土力学, 2022, 43(S2): 265-274.
[15] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 斌,李术才,李树忱,钟世航. 隧道含水构造直流电阻率法超前探测研究[J]. , 2009, 30(10): 3093 -3101 .
[2] 钟佳玉,郑永来,倪 寅. 波浪作用下砂质海床孔隙水压力的响应规律实验研究[J]. , 2009, 30(10): 3188 -3193 .
[3] 刘泉声,胡云华,刘 滨. 基于试验的花岗岩渐进破坏本构模型研究[J]. , 2009, 30(2): 289 -296 .
[4] 王国波,马险峰,杨林德. 软土地铁车站结构及隧道的三维地震响应分析[J]. , 2009, 30(8): 2523 -2528 .
[5] 龙万学,陈开圣,肖 涛,彭小平. 非饱和红黏土三轴试验研究[J]. , 2009, 30(S2): 28 -33 .
[6] 邢万波 ,周 钟 ,唐忠敏 ,孙 钢. 基于ν-SVR和改进PSO算法的反分析方法及应用[J]. , 2009, 30(S2): 540 -546 .
[7] 魏厚振,颜荣涛,韦昌富,吴二林,陈 盼,田慧会. 含天然气水合物沉积物相平衡问题研究综述[J]. , 2011, 32(8): 2287 -2294 .
[8] 袁敬强 ,陈卫忠 ,谭贤君 ,王 辉. 软弱地层注浆的细观力学模拟研究[J]. , 2011, 32(S2): 653 -659 .
[9] 马立秋 ,张建民 ,张 武. 爆炸离心模型试验研究进展与展望[J]. , 2011, 32(9): 2827 -2833 .
[10] 张洪武,秦建敏. 基于接触价键的颗粒材料微观临界状态[J]. , 2008, 29(4): 865 -870 .