岩土力学 ›› 2024, Vol. 45 ›› Issue (3): 885-894.doi: 10.16285/j.rsm.2023.0353

• 数值分析 • 上一篇    下一篇

光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用

陈丁,黄文雄,黄丹   

  1. 河海大学 力学与材料学院,江苏 南京 211000
  • 收稿日期:2023-03-21 接受日期:2023-06-26 出版日期:2024-03-11 发布日期:2024-03-20
  • 通讯作者: 黄文雄,男,1961年生,博士,教授,主要从事岩土力学和数值方法研究工作。E-mail: wh670@hhu.eu.cn
  • 作者简介:陈丁,男,1992年生,博士,主要从事计算力学与虚拟仿真研究工作。E-mail: ding92@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(No.12302257,No.11772117);江苏省“卓越博士后计划”(No.2022ZB160)。

A frictional contact algorithm in smoothed particle method with application in large deformation of soils

CHEN Ding, HUANG Wen-xiong, HUANG Dan   

  1. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 211000, China
  • Received:2023-03-21 Accepted:2023-06-26 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (12302257, 11772117) and Jiangsu Province Excellent Postdoctoral Program (2022ZB160).

摘要: 光滑粒子流体动力学(smoothed particle hydrodynamics,简称SPH)方法作为拉格朗日型的无网格粒子类方法,在固体极大变形问题的数值求解分析中具有显著优势。针对包含界面接触的固体大变形问题的SPH模拟,基于一种能改善边界精度的光滑粒子插值格式——有限粒子法(finite particle method,简称FPM),提出了一种新的点对体积的离散(point-to-volume discretization,简称PTVD)界面接触算法。该算法实际是将界面接触力等价转换为接触点附近两组粒子间的外部相互作用力。具体是根据接触界面特点将接触面两侧物体离散后的粒子划分为主体粒子和从属粒子,对于每个接触点附近的从属粒子,根据其影响域所包含的主体粒子情况确定该粒子与接触面的相对关系计算法向接触力,根据其影响域内两类粒子的相对切向速度和界面摩擦系数计算切向接触力。PTVD接触算法可避免界面粒子识别及精确模拟等相关的复杂接触力计算,充分体现了光滑粒子法的非局部特点。在利用经典界面接触和摩擦算例进行验证的基础上,将PTVD算法应用于颗粒土拟静力坍塌和弹体侵彻软土等涉及接触界面的大变形土力学问题SPH数值分析,结果表明PTVD算法在摩擦接触问题的SPH数值分析中具有有效性和广泛适用性。

关键词: 光滑粒子流体动力学法, 摩擦接触界面, 大变形, PTVD接触算法

Abstract: Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless method, which has remarkable advantages in numerical analysis of solids with extremely large deformation. The present paper deals with SPH simulation of large solid deformation involving frictional contact interface. A new pure smoothed particle PTVD (point-to-volume discrete) contact algorithm is developed based on the FPM (finite particle method) particle interpolation, which is an alternative SPH formulation for improving the interpolation accuracy near boundaries. The PTVD contact algorithm transforms equivalently the interface contact force into the external interactive forces between particles near the contact interface. To be specific, the particles modelling either body in contact are grouped as master particles and slave particles with respect to the feature of the contact interface. For each slave particle near the contact point, the relative position is determined according to the amount of master particles contained in the influence domain of that particle, and the normal contact force is then calculated considering the contact stiffness. The shear contact force is determined considering the relative shear velocity between two particle groups within the influence domain and the friction of the interface. The proposed PTVD contact algorithm highlights the nonlocal characteristics of the SPH methods and avoids the complex algorithm for identifying and accurately describing the interface. Following the verification through the classic contact and friction examples, the PTVD algorithm is applied to the SPH analysis of quasi-static collapse of cohesionless granular soil and projectile penetration into soft soil. The results demonstrate the effectiveness and applicability of the proposed contact algorithm in SPH modelling of frictional contact problems.

Key words: smoothed particle hydrodynamics (SPH) method, frictional contact interface, large deformation, point-to-volume discrete (PTVD) contact algorithm

中图分类号: 

  • O351
[1] 邓鹏海, 刘泉声, 黄兴. 隧道底板渐进破裂碎胀大变形:一种新的底鼓机制研究[J]. 岩土力学, 2023, 44(5): 1512-1529.
[2] 王祖乐, 孔德琼, 杜越明, 朱斌, . 岩土工程连续极限分析方法拓展与验证[J]. 岩土力学, 2023, 44(12): 3531-3540.
[3] 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523.
[4] 康永水, 耿志, 刘泉声, 刘滨, 朱元广, . 我国软岩大变形灾害控制技术与方法研究进展[J]. 岩土力学, 2022, 43(8): 2035-2059.
[5] 周亚东, 翟鑫东, 李顺群, 陈思源, . 碎石桩复合地基大变形非线性固结模型[J]. 岩土力学, 2022, 43(10): 2777-2784.
[6] 王兴开, 夏才初, 朱哲明, 谢文兵, 宋磊博, 韩观胜, . 单级荷载下极软煤岩长期蠕变规律及本构模型研究[J]. 岩土力学, 2021, 42(8): 2078-2088.
[7] 董青, 周正华, 苏杰, 李小军, 郝冰, . 基于对数动骨架的可考虑液化大变形本构[J]. 岩土力学, 2021, 42(7): 1903-1910.
[8] 朱淳, 何满潮, 张晓虎, 陶志刚, 尹乾, 李利峰, . 恒阻大变形锚杆非线性力学模型 及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42(7): 1911-1924.
[9] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[10] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[11] 张传庆, 吕浩安, 刘小岩, 周辉, 高阳, 闫东明, . 隧道新型恒阻让压装置的工作机制研究[J]. 岩土力学, 2020, 41(12): 4045-4053.
[12] 程利兴, 姜鹏飞, 杨建威, 朱阳涛, 郑仰发, 张镇, 李冰冰, . 深井孤岛工作面巷道围岩采动应力分区演化特征[J]. 岩土力学, 2020, 41(12): 4078-4086.
[13] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[14] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[15] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[3] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[4] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[5] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[6] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[7] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[8] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[9] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[10] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .