岩土力学 ›› 2022, Vol. 43 ›› Issue (8): 2035-2059.doi: 10.16285/j.rsm.2021.1926

• 基础理论与实验研究 •    下一篇

我国软岩大变形灾害控制技术与方法研究进展

康永水1, 2,耿志1, 2,刘泉声3,刘滨1,朱元广1   

  1. 1. 中国科学院武汉岩土力学研究所 岩石力学与工程国家重点实验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 武汉大学 土木建筑工程学院,湖北 武汉 430072
  • 收稿日期:2021-11-15 修回日期:2022-01-10 出版日期:2022-08-11 发布日期:2022-08-17
  • 通讯作者: 耿志,男,1999年生,硕士研究生,主要从事裂隙岩体稳定控制理论与技术方面的研究工作。E-mail:gengzhi21@mails.ucas.ac.cn E-mail:yskang@whrsm.ac.cn
  • 作者简介:康永水,男,1985年生,博士,副研究员,主要从事深部破碎软弱围岩稳定控制理论与技术方面的研究工作。
  • 基金资助:
    国家自然科学基金面上项目(No. 51774267, No. 41941018)

Research progress on support technology and methods for soft rock with large deformation hazards in China

KANG Yong-shui1, 2, GENG Zhi1, 2, LIU Quan-sheng3, LIU Bin1, ZHU Yuan-guang1   

  1. 1. State Key Laboratory of Rock Mechanics and Engineering, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2021-11-15 Revised:2022-01-10 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (51774267, 41941018).

摘要: 我国软岩工程涉及能源开采、水利、交通、国防等重要工程领域。随着我国能源开采逐渐向深部延伸以及交通、水利、隧洞等工程的发展,大量隧道、巷道需穿越软岩地层,高地应力、围岩破碎软弱等问题突出,软岩大变形灾害频频发生,造成重大安全隐患和经济损失。对我国现阶段软岩支护的研究进展做了系统的总结,从4个方面概括分析了软岩大变形灾害控制技术与方法的研究现状,包括:(1)以改进型刚性或可缩性支架、复合型衬砌为代表的被动支护方法;(2)以高强预应力锚杆、锚索为代表的增强型主动支护技术;(3)以注浆改性为主导思想的软岩改性技术;(4)让压技术;(5)多重改进方法联合支护技术。阐述了不同支护技术和方法的发展现状,分析了不同支护手段的适用条件、技术优势与不足。采用单一支护手段的改进通常难以满足软岩大变形控制的需求,如何实现不同支护措施之间的高效协同控制,以及实现对围岩变形应力场的实时精准监测等问题是目前我国软岩大变形灾害防控亟待解决的难题。最后,基于上述研究成果,分析了我国软岩大变形灾害控制技术的发展趋势并提出了建议。

关键词: 软岩大变形, 支护, 技术现状, 研究进展, 围岩控制

Abstract:

Soft rock engineering involves many important engineering fields such as mining, hydraulic engineering, transport and national defense. With the increase of mining depth and the development of tunnel engineering, a large number of tunnels and roadways need to pass through soft rock formations, in which the problems such as high geostress and broken and weak surrounding rocks are prominent. Large deformation disasters of soft rocks pose serious threats to engineering safety and cause enormeous economic losses. In this paper, the research progress on soft rock support in China is first reviewed, and the research status of technology for soft rock control for large deformation hazards is summarized in the following aspects. (1) Passive support methods represented by improved rigid support, retractable support and compound lining. (2) Reinforced active support technology using high-strength bolts and cables. (3) Soft rock modification technology dominated by grouting modification. (4) Soft rock reinforcement with pressure relief as the core idea. (5) Compound support methods. Furthermore, the development of different supporting technologies and methods are elaborated, and the applicable conditions, advantages and disadvantages of different supporting methods are analyzed. It is usually difficult to meet the demand of large deformation control of soft rock relying on a single support method. Therefore, it is urgent to solve the problems of the prevention and control of large deformation disaster of soft rock to realize the efficient collaborative control among different supporting measures and achieve the real-time accurate monitoring of deformation and stress fields. Finally, based on the above research results, the development tendency of support technology for soft rock with large deformation hazards is prospected and the countermeasures are proposed.

Key words: large deformation of soft rock, support, technical status, research progress, surrounding rock control

中图分类号: 

  • TU 452
[1] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[2] 余伟健, 李可, 刘泽, 郭涵潇, 安百富, 王平, . 煤巷弱胶结顶板稳定性分析与变形控制技术[J]. 岩土力学, 2022, 43(S2): 382-391.
[3] 刘学伟, 刘泉声, 汪志强, 刘滨, 康永水, 王传兵, . 基于格栅拱架的软岩巷道分步联合控制技术研究[J]. 岩土力学, 2022, 43(S1): 469-478.
[4] 周勇, 赵元基, 王正振, . 基于土体强度冗余法的桩锚支护结构 动态稳定性分析[J]. 岩土力学, 2022, 43(S1): 641-649.
[5] 朱彦鹏, 吴林平, 施多邦, 赵壮福, 吕向向, 段新国, . 基于Pasternak地基模型的非线性土抗力−桩 身侧向位移曲线在基坑支护桩中的应用[J]. 岩土力学, 2022, 43(9): 2581-2591.
[6] 莫品强, 刘尧, 黄子丰, 滕鸿博, 陈斌, 陶祥令, . 复杂支护条件下深基坑支护桩−冠梁−支撑 的变形协调及空间效应研究[J]. 岩土力学, 2022, 43(9): 2592-2601.
[7] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[8] 董建华, 徐斌, 吴晓磊, 连博, . 隧道分级让压支护作用下围岩 弹塑性变形全过程解析[J]. 岩土力学, 2022, 43(8): 2123-2135.
[9] 张箭, 戚瑞宇, 宗晶瑶, 丰土根, . 盾构隧道环向开挖面破坏机制及剪胀效应研究[J]. 岩土力学, 2022, 43(7): 1833-1844.
[10] 王凯, 杨宝贵, 王鹏宇, 李冲, . 软弱厚煤层沿空留巷变形破坏特征及控制研究[J]. 岩土力学, 2022, 43(7): 1913-1924.
[11] 吴祥业, 王婧雅, 陈世江, 张玉江, 卜庆为, . 重复采动巷道塑性区调控原理与稳定控制[J]. 岩土力学, 2022, 43(1): 205-217.
[12] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[13] 沈宇鹏, 王笃礼, 林园榕, 汤天笑, 刘欣, . 越冬基坑水平冻胀的防治措施效果分析[J]. 岩土力学, 2021, 42(5): 1434-1442.
[14] 吴奔, 刘维, 史培新, 付春青. 盾构隧道掘进面失稳螺旋破坏机制分析[J]. 岩土力学, 2021, 42(3): 767-774.
[15] 郭金刚, 李耀晖, 何富连, 陈见行, 赵光明, 张俊文, . 基于残余剪切强度的全长黏结锚杆拉拔模拟[J]. 岩土力学, 2021, 42(11): 2953-2960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .