岩土力学 ›› 2023, Vol. 44 ›› Issue (10): 2942-2952.doi: 10.16285/j.rsm.2023.0857

• 基础理论与实验研究 • 上一篇    下一篇

粉土改良膨胀土的路用性能与现场试验

张艺1,李永强2,章定文1,侯爵3,樊晓军2,唐紫琼1   

  1. 1. 东南大学 交通学院,江苏 南京 211189;2. 中交一公局第三工程有限公司,北京 100000;3. 江苏省交通工程建设局,江苏 南京 210017
  • 收稿日期:2023-06-18 接受日期:2023-07-31 出版日期:2023-10-13 发布日期:2023-10-16
  • 通讯作者: 章定文,男,1978年生,博士,教授,博士生导师,主要从事交通岩土工程方面的教学与研究工作。E-mail: zhang@seu.edu.cn E-mail:220213560@seu.edu.cn
  • 作者简介:张艺,女,1998年生,硕士研究生,主要从事土壤改良治理方面的研究工作。

Road performance and field test of expansive soil improved by silt

ZHANG Yi1, LI Yong-qiang2, ZHANG Ding-wen1, HOU Jue3, FAN Xiao-jun2, TANG Zi-qiong1   

  1. 1. School of Transportation, Southeast University, Nanjing, Jiangsu 211189, China; 2. No. Three Engineering Co., Ltd. of CCCC First Highway Engineering Co., Ltd., Beijing 100000, China; 3. Transportation Engineering Construction Bureau of Jiangsu Province, Nanjing, Jiangsu 210017, China
  • Received:2023-06-18 Accepted:2023-07-31 Online:2023-10-13 Published:2023-10-16

摘要: 为探究粉土对膨胀土的改良效果,对不同粉土占比改良膨胀土进行了胀缩特性、路用性能和微观结构测试。研究表明:掺入粉土改变了膨胀土土体颗粒成分及结构,抑制了膨胀土的胀缩潜势;随着粉土颗粒的增加,膨胀土的密实度和无侧限抗压强度均先增大后减小,最大干密度在粉土占比为40%时达到1.889 g/cm3,无侧限抗压强度在粉土占比为10%时最大,加州承载比(CBR)值持续显著提高,回弹模量呈下降趋势,均满足规范要求;验证了粉土改良膨胀土的可行性,确定了最佳配合比为粉土掺量40%。为便于现场施工,并考虑现场拌和均匀程度,先掺入3%低剂量石灰对膨胀土进行“砂化”,降低膨胀土黏性使其破碎。在此基础上,采用粉土掺量40%对膨胀土进行改良后用于高速公路路堤填筑,并开展了现场压实度、CBR值、弯沉值等测试。现场试验结果表明:现场填筑联合改良试验段和单一石灰改良对照段整体压实质量良好,但试验段压实度易受粉土均匀程度影响而降低;试验段路基CBR值和路基弯沉与对照段相当,粉土改良有效弥补了相对于对照段减少的2%石灰所提供的强度。

关键词: 膨胀土, 粉土, 改良, 胀缩特性, 路用性能

Abstract: To explore the improvement effect of adding silt on expansive soil, the swelling-shrinkage characteristics, road performance and microstructure of expansive soil with different proportions of silt were tested. The results show that the incorporation of silt changes the composition and structure of soil particles, and inhibits the expansion and contraction potential of expansive soil. With the increase of silt particles, the compactness and unconfined compressive strength of expansive soil increase first and then decrease. The maximum dry density reaches 1.889 g/cm3 when the proportion of silt is 40%, and the unconfined compressive strength reaches the maximum when the proportion of silt is 10%. The California bearing ratio (CBR) value continues to increase significantly, and the rebound modulus shows a downward trend. All of these indexes meet the requirements of the specification. The feasibility of using silt to improve expansive soil is verified, and the optimum dosing ratio of silt is determined to be 40%. In order to facilitate onsite construction and consider the uniformity of onsite mixing, 3% low-dosage lime is first added to causes the performance of expansive soil to tend towards those of sandy soil so as to reduce the viscosity of the expansive soil and break it. On this basis, the expansive soil is applied to highway embankment filling after improved with 40% silt content, and onsite compaction degree, CBR value, deflection and other tests are carried out. The field test results show that the overall compaction quality of the experimental section improved by silt and lime and the control section treated by the single lime are controlled well, but the compaction degree of the test section is reduced due to the influence of the uniformity of the silt. The CBR value and subgrade deflection of the test section are comparable to those of the control section, and the silt improvement effectively compensates for the strength provided by the 2% lime reduced relative to the control section.

Key words: expansive soil, silt, improvement, swelling-shrinkage characteristics, road performance

中图分类号: 

  • TU443
[1] 罗晓倩, 孔令伟, 鄢俊彪, 高志傲, 田升奎, . 不同饱和度下膨胀土原位孔内剪切试验及 强度响应特征[J]. 岩土力学, 2024, 45(1): 153-163.
[2] 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508.
[3] 邹维列, 樊科伟, 张攀, 韩仲, . 土工泡沫减压膨胀土挡墙侧向压力及影响因素分析[J]. 岩土力学, 2023, 44(9): 2537-2544.
[4] 曾召田, 崔哲旗, 孙德安, 姚志, 潘斌, . 南宁膨胀土持水性能的温度效应及微观机制[J]. 岩土力学, 2023, 44(8): 2177-2185.
[5] 周恩全, 姚缘, 崔磊, 王龙. 非饱和橡胶粉土抗剪强度特性研究[J]. 岩土力学, 2023, 44(7): 1949-1958.
[6] 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016.
[7] 张凌凯, 崔子晏, . 干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740.
[8] 高浩东, 安然, 孔令伟, 张先伟, 雷学文, . 干燥失水条件下膨胀土的细观裂隙演化特征研究[J]. 岩土力学, 2023, 44(2): 442-450.
[9] 樊科伟, 邹维列, 王柳江, 廖洁, 刘斯宏, . 土工合成材料缓冲层减压膨胀土挡墙侧向压力的实用预测方法研究[J]. 岩土力学, 2023, 44(11): 3182-3190.
[10] 李丽华, 黄 畅, 李文涛, 李孜健, 叶治, . 稻壳灰−矿渣固化膨胀土力学与微观特性研究[J]. 岩土力学, 2023, 44(10): 2821-2832.
[11] 庄心善, 周荣, 周睦凯, 陶高梁, 金合意. 孔隙溶液对循环荷载作用下膨胀土 累积变形及阻尼比影响研究[J]. 岩土力学, 2022, 43(S2): 1-10.
[12] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[13] 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290.
[14] 喻成成, 卢正, 姚海林, 刘杰, 詹永祥, . 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(S1): 157-163.
[15] 孟凡丽, 娄桢桢, 葛威, . 长期循环荷载下卸荷粉土动力特性的试验研究[J]. 岩土力学, 2022, 43(S1): 383-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[3] 高树生,钱根宝,王 彬,杨作明,刘华勋. 新疆火山岩双重介质气藏供排气机理数值模拟研究[J]. , 2011, 32(1): 276 -280 .
[4] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[5] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[6] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[7] 褚福永 ,朱俊高 ,贾 华 ,安淑红. 粗粒土卸载-再加载力学特性试验研究[J]. , 2012, 33(4): 1061 -1066 .
[8] 卢 强,王占江,李 进,郭志昀,门朝举. 球面波加载下黄土线黏弹性本构关系[J]. , 2012, 33(11): 3292 -3298 .
[9] 王 苏,路德春,杜修力. 地下结构地震破坏静-动力耦合模拟研究[J]. , 2012, 33(11): 3483 -3488 .
[10] 刘 钦 ,李术才 ,李利平 ,原小帅 ,赵 勇 . 软弱破碎围岩隧道炭质页岩蠕变特性试验研究[J]. , 2012, 33(S2): 21 -0029 .