岩土力学 ›› 2023, Vol. 44 ›› Issue (10): 2821-2832.doi: 10.16285/j.rsm.2023.0740

• 基础理论与实验研究 • 上一篇    下一篇

稻壳灰−矿渣固化膨胀土力学与微观特性研究

李丽华1, 2,黄畅1, 2,李文涛1, 2,李孜健1, 2,叶治1, 2   

  1. 1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068;2. 湖北工业大学 湖北省生态道路工程研究中心,湖北 武汉 430068
  • 收稿日期:2023-06-06 接受日期:2023-07-10 出版日期:2023-10-13 发布日期:2023-10-16
  • 通讯作者: 李文涛,男,1985年生,博士,副教授,主要从事固废资源化利用、岩土加固等方面的研究工作。E-mail: wli20201027@hbut.edu.cn E-mail:researchmailbox@163.com
  • 作者简介:李丽华,女,1978年生,博士,教授,主要从事加筋土、环境岩土等方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No.52278347,No.U22A20232);湖北省重点研发计划(No.2022BCA059);湖北工业大学杰出人才基金项目(No.XJ2021000501)。

Study on mechanical and microscopic characterization of expansive soil solidified by rice husk ash-granulated blast furnace slag

LI Li-hua1, 2, HUANG Chang1, 2, LI Wen-tao1, 2, LI Zi-jian1, 2, YE Zhi1, 2   

  1. 1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. Ecological Road Engineering Research Center, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2023-06-06 Accepted:2023-07-10 Online:2023-10-13 Published:2023-10-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52278347, U22A20232), the Key Research and Development Program of Hubei Province (2022BCA059) and the Outstanding Person Fund of Hubei University of Technology (XJ2021000501).

摘要:

膨胀土具有强胀缩性,吸水极易膨胀软化,失水急剧收缩硬裂,这种胀缩性给工程结构造成很大危害。采用稻壳灰(rice husk ash,RHA)和高炉矿渣(ground granulated blast-furnace slag,GGBS)作为固化剂对膨胀土进行稳定化,通过击实试验、无侧限抗压强度试验、直剪试验、加州承载比(California bearing ratio,CBR)试验、膨胀试验、扫描电镜试验和X射线衍射(X-ray diffraction,XRD)试验,研究了固化后膨胀土的力学强度、膨胀特性变化规律及微观机制。试验结果表明:在不同配比和掺量的固化土中,稻壳灰−矿渣为6:4配比和10%掺量固化土无侧限抗压强度最大;稻壳灰−矿渣(RHA-GGBS,RG)可降低膨胀土轴向变形,提高抗剪强度,随着固化剂掺量增加,固化土黏聚力先增大后减小,内摩擦角逐渐增大;与未处理的膨胀土相比,掺稻壳灰−矿渣固化土CBR值最高可提高至7.9倍,路基土的力学强度得到了显著改善。稻壳灰−矿渣可明显改善膨胀土的膨胀率,减小膨胀力,无荷膨胀率最多可从11.4%下降到0.5%,有荷膨胀率最多可从1.1%趋于0%,膨胀力降幅介于12.1%~62.8%之间。稻壳灰−矿渣可以促进团聚体、无定型水化产物和极少量钙矾石(AFt)的形成,分布在土体表面并填充孔隙,同时可明显减少土中蒙脱石和伊利石亲水矿物成分,增强颗粒之间的胶结作用,从而提高路基土的力学强度,降低固化土膨胀性能。

关键词: 稻壳灰, 高炉矿渣, 膨胀土, 无侧限抗压强度, 膨胀特性, 固化机制

Abstract:

Expansive soil has strong swelling-shrinkage behavior. It swells and softens after absorbing water, and shrinks and cracks after losing water. These swelling-shrinkage behavior will seriously threaten engineering structures. In this study, the expansive soil was stabilized by rice husk ash (RHA) and ground granulated blast-furnace slag (GGBS). Through compaction test, unconfined compressive strength test, direct shear test, California bearing ratio (CBR) test, swelling test, scanning electron microscope test and X-ray diffraction (XRD) test, the mechanical strength, expansion characteristics and microscopic mechanism of solidified expansive soil were studied. Testing results show that the unconfined compressive strength of the stabilized soil with a ratio of RHA to GGBS of 6:4 and a 10% curing agent dosage is the highest among all stabilized soils. The mixture of rice husk ash-ground granulated blast furnace slag (RG) can reduce axial deformation and improve shear strength. With the increase of curing agent content, the cohesion of stabilized soil increases first and then decreases, and the internal friction angle increases gradually. Compared with the untreated expansive soil, the CBR value of the stabilized soil with RG can be increased to 7.9 times, and the mechanical strength of the soil has been significantly improved. RG can significantly reduce the swelling rate of expansive soil and the swelling force. The free swelling rate can be reduced from 11.4% to 0.5%, and the swelling rate with loading can be reduced from 1.1% to 0%. Additionally, the swelling force decreases between 12.1% and 62.8%. RG can promote the formation of flocculation, amorphous hydration products and a very small amount of ettringite (AFt), which are distributed on the surface of the soil and fill the pores so as to improve the strength of the soil and reduce the expansion of the soil. Meanwhile, RG can significantly diminish the hydrophilic minerals such as montmorillonite and illite in the soil and thus enhance the cementation between particles, thereby improving the strength and downgrading the swelling behavior of the expansive soil.

Key words: rice husk ash, ground granulated blast furnace slag, expansive soil, unconfined compressive strength, expansion characteristics, curing mechanism

中图分类号: 

  • TU443
[1] 罗晓倩, 孔令伟, 鄢俊彪, 高志傲, 田升奎, . 不同饱和度下膨胀土原位孔内剪切试验及 强度响应特征[J]. 岩土力学, 2024, 45(1): 153-163.
[2] 张艳美, 张建, 袁彦昊, 孙文秀, . 纳米SiO2和石灰固化滨海石油污染土试验研究[J]. 岩土力学, 2023, 44(增刊): 259-267.
[3] 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508.
[4] 邹维列, 樊科伟, 张攀, 韩仲, . 土工泡沫减压膨胀土挡墙侧向压力及影响因素分析[J]. 岩土力学, 2023, 44(9): 2537-2544.
[5] 曾召田, 崔哲旗, 孙德安, 姚志, 潘斌, . 南宁膨胀土持水性能的温度效应及微观机制[J]. 岩土力学, 2023, 44(8): 2177-2185.
[6] 张凌凯, 崔子晏, . 干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740.
[7] 高浩东, 安然, 孔令伟, 张先伟, 雷学文, . 干燥失水条件下膨胀土的细观裂隙演化特征研究[J]. 岩土力学, 2023, 44(2): 442-450.
[8] 李丽华, 张东方, 肖衡林, 王翠英, 邓永锋. 加筋稻壳灰改性土动力特性研究[J]. 岩土力学, 2023, 44(12): 3360-3369.
[9] 刘凤云, 罗怀瑞, 万旭升, 路建国. 低温养护下电石渣激发偏高岭土基地聚物固化土力学特性及固化机制研究[J]. 岩土力学, 2023, 44(11): 3151-3164.
[10] 樊科伟, 邹维列, 王柳江, 廖洁, 刘斯宏, . 土工合成材料缓冲层减压膨胀土挡墙侧向压力的实用预测方法研究[J]. 岩土力学, 2023, 44(11): 3182-3190.
[11] 张艺, 李永强, 章定文, 侯爵, 樊晓军, 唐紫琼. 粉土改良膨胀土的路用性能与现场试验[J]. 岩土力学, 2023, 44(10): 2942-2952.
[12] 庄心善, 周荣, 周睦凯, 陶高梁, 金合意. 孔隙溶液对循环荷载作用下膨胀土 累积变形及阻尼比影响研究[J]. 岩土力学, 2022, 43(S2): 1-10.
[13] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[14] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[15] 喻成成, 卢正, 姚海林, 刘杰, 詹永祥, . 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(S1): 157-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘豆豆,陈卫忠,杨建平,谭贤君,周喜德. 脆性岩石卸围压强度特性试验研究[J]. , 2009, 30(9): 2588 -2594 .
[2] 王桂尧,李 斌,罗 军,付宏渊. 粉土基质吸力的新型量测装置与土-水特征研究[J]. , 2010, 31(11): 3678 -3682 .
[3] 王志萍,胡敏云,夏玲涛. 垃圾填土压缩特性的室内试验研究[J]. , 2009, 30(6): 1681 -1686 .
[4] 贾 强,应惠清,张 鑫. 锚杆静压桩技术在既有建筑物增设地下空间中的应用[J]. , 2009, 30(7): 2053 -2057 .
[5] 路军富,王明年,贾媛媛,喻 渝,谭忠盛. 高速铁路大断面黄土隧道二次衬砌施作时机研究[J]. , 2011, 32(3): 843 -848 .
[6] 方 焘 ,刘新荣 ,耿大新 ,罗 照 ,纪孝团 ,郑明新 . 大直径变径桩竖向承载特性模型试验研究(I)[J]. , 2012, 33(10): 2947 -2952 .
[7] 胡万雨 ,陈向浩 ,林 江 ,况磊强 . 瀑布沟水电站砾石土心墙初次蓄水期原位钻孔渗流试验研究[J]. , 2013, 34(5): 1259 -1263 .
[8] 朱 星 ,许 强 ,汤明高 ,付小敏 ,周建斌 . 典型岩石破裂产生次声波试验研究[J]. , 2013, 34(5): 1306 -1312 .
[9] 黄 诚,杨春和,吕 涛. 岩土力学数值模拟结果的概率评估方法研究[J]. , 2008, 29(3): 727 -733 .
[10] 刘金云 ,陈健云 . 考虑流-固耦合的输水隧道动力模型试验中的一种相似技巧[J]. , 2008, 29(12): 3387 -3392 .