岩土力学 ›› 2023, Vol. 44 ›› Issue (11): 3151-3164.doi: 10.16285/j.rsm.2023.1100

• 基础理论与实验研究 • 上一篇    下一篇

低温养护下电石渣激发偏高岭土基地聚物固化土力学特性及固化机制研究

刘凤云,罗怀瑞,万旭升,路建国   

  1. 西南石油大学 土木工程与测绘学院,四川 成都 610500
  • 收稿日期:2023-07-26 接受日期:2023-09-25 出版日期:2023-11-28 发布日期:2023-11-28
  • 通讯作者: 万旭升,男,1987年生,博士,教授,硕士生导师,主要从事盐胀机理及寒区工程研究。E-mail: xinyanwanxxusheng@163.com E-mail: liufengyun0634@163.com
  • 作者简介:刘凤云,女,1988年生,博士,讲师,硕士生导师,主要从事寒区岩土工程研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 42071087);西南石油大学起航计划资助项目(No. 2021QHZ003)。

Study on mechanical properties and curing mechanism of metakaolin based geopolymer solidified soil activated by calcium carbide slag under low temperature curing

LIU Feng-yun, LUO Huai-rui, WAN Xu-sheng, LU Jian-guo   

  1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2023-07-26 Accepted:2023-09-25 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42071087) and the Scientific Research Starting Project of SWPU (2021QHZ003).

摘要: 为解决使用水泥固化冻土时热扰动大及水泥带来的碳排放等问题,采用电石渣作为碱激发剂激发偏高岭土基地聚物固化土质,研究偏高岭土掺量、电石渣掺量、养护温度和养护龄期对固化土抗压强度的影响规律,并与水泥固化土进行平行对比,采用X射线衍射和电镜扫描等试验方法进行微观分析,揭示其固化机制。试验结果表明:偏高岭土和电石渣均存在最优掺量,当掺量小于最优掺量时发挥积极作用,超过时则会产生反作用。其中偏高岭土和电石渣的最优掺量分别为10%和6%,最优掺量试样在20、–2、–10 ℃养护28 d的抗压强度分别为3.783、1.164、0.901 MPa。电石渣激发偏高岭土基地质聚合物主要产物有无定型的水化硅酸钙、水化铝酸钙凝胶,是固化土抗压强度提升的主要原因。地聚物固化土在–2 ℃和–10 ℃养护28 d的抗压强度相较于在20 ℃养护28 d分别降低69%和76%,冻结状态下土体冰晶扩张土孔隙,同时促使裂缝生长,降低地质聚合反应效率,聚合产物数量减少。试样抗压强度随养护龄期的增加而增加,地质聚合反应产生的硅铝网格结构随养护龄期的增加而增多,使土体内部结构相互交织联结,形成更加密实的结构。地质聚合反应受到低温影响较小,地聚物固化土在20、–2、–10 ℃养护28 d的抗压强度分别为水泥固化土的1.07、1.13和1.19倍。研究结果可为地聚物在冻土区路基土质加固的应用奠定一定的理论基础。

关键词: 地聚物固化土, 偏高岭土, 电石渣, 无侧限抗压强度, 微观分析

Abstract: In order to address the issues about significant thermal disruption and carbon emissions associated with the use of cement for solidifying frozen soil, calcium carbide slag was used as an alkali activator to activate metakaolin based geopolymer for soil solidification. In this research, the impacts of metakaolin and calcium carbide slag contents, curing temperature and curing age on the compressive strength of the solidified soil were investigated. Geopolymer solidified soil and cement solidified soil were compared in parallel. The curing mechanism was studied by X-ray diffraction and electron microscope scanning. Test results indicate that there is an optimal content of metakaolin and calcium carbide slag. When the content is lower than the optimal content, it plays an active role. On the contrary, it will have a negative effect. The optimal content of metakaolin and calcium carbide slag is 10% and 6%, respectively. The compressive strength of the optimal content sample cured at 20 ℃, –2 ℃ and –10 ℃ for 28 days is 3.783 MPa, 1.164 MPa and 0.901 MPa, respectively. The main products of metakaolin based geopolymer activated by calcium carbide slag are amorphous hydrated calcium silicate and hydrated calcium aluminate gel, which contribute to the improvement of compressive strength of solidified soil. The compressive strength of geopolymer solidified soil cured at –2 ℃ and –10 ℃for 28 days is 69% and 76% lower than that cured at 20 ℃, respectively. Due to the expansion of the pores in the frozen state which is related to the ice crystal, the growth of cracks is promoted, the efficiency of geological polymerization reaction is reduced and the amount of polymerization products is reduced. Compressive strength of the samples increases with the increase of curing age, because of the more silicon-aluminum grid structures produced by the geological polymerization reaction, the lower the porosity of the solidified soil and the internal structure of the soil is intertwined to form a denser structure. The geopolymerization reaction is less affected by low temperature. Compressive strength of geopolymer solidified soil cured at 20 ℃, –2 ℃ and –10 ℃ for 28 days is 1.07, 1.13 and 1.19 times that of cement solidified soil, respectively. The research results lay a theoretical foundation for the application of geopolymer in subgrade soil reinforcement in frozen soil area.

Key words: geopolymer solidified soil, metakaolinite, calcium carbide slag, unconfined compression strength, microscopic analysis

中图分类号: 

  • TU 443
[1] 张艳美, 张建, 袁彦昊, 孙文秀, . 纳米SiO2和石灰固化滨海石油污染土试验研究[J]. 岩土力学, 2023, 44(增刊): 259-267.
[2] 李新明, 张浩扬, 武迪, 郭砚睿, 任克彬, 谈云志, . 石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603.
[3] 李丽华, 黄 畅, 李文涛, 李孜健, 叶治, . 稻壳灰−矿渣固化膨胀土力学与微观特性研究[J]. 岩土力学, 2023, 44(10): 2821-2832.
[4] 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202.
[5] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[6] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
[7] 王盛年, 高新群, 吴志坚, 惠洪雷, 张兴瑾, . 水泥偏高岭土复合稳定粉砂土渗透特性试验研究[J]. 岩土力学, 2022, 43(11): 3003-3014.
[8] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
[9] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[10] 谈云志, 占少虎, 沈克军, 左清军, 明华军, . 处治红黏土团粒的表层硬化与粒间胶结效应[J]. 岩土力学, 2021, 42(2): 361-368.
[11] 李甜果, 孔令伟, 王俊涛, 王凤华, . 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741-2754.
[12] 谈云志, 占少虎, 胡焱, 曹玲, 邓永锋, 明华军, 沈克军, . 石灰-红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104-112.
[13] 谈云志, 胡焱, 曹玲, 邓永锋, 明华军, 沈克军, . 偏高岭土协同石灰钝化红黏土水敏性的机制[J]. 岩土力学, 2020, 41(7): 2207-2214.
[14] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学, 2020, 41(4): 1146-1152.
[15] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[5] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[6] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[7] 李兴高,刘维宁. 挡土结构上水-土压力分算的进一步探讨[J]. , 2009, 30(2): 419 -424 .
[8] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .
[9] 周春梅,章泽军,徐大杰,王生维,李先福. 古构造应力场数值模拟及危险性预测研究[J]. , 2009, 30(7): 2141 -2146 .
[10] 孙长帅,杨海巍,徐光黎. 岩石锚杆基础抗拔承载力计算方法探究[J]. , 2009, 30(S1): 75 -78 .