岩土力学 ›› 2024, Vol. 45 ›› Issue (3): 737-749.doi: 10.16285/j.rsm.2023.1041

• 基础理论与实验研究 • 上一篇    下一篇

跨煤岩界面穿层压裂裂缝动态扩展特征试验研究

李浩哲1, 2,姜在炳2,范宗洋3,庞涛1, 2,刘修刚2, 4   

  1. 1. 煤炭科学研究总院,北京 100013;2. 中煤科工西安研究院(集团)有限公司,陕西 西安 710077; 3. 中国石油大学(北京) 石油工程学院,北京 102249;4. 中国矿业大学(北京)应急管理与安全工程学院,北京 100083
  • 收稿日期:2023-07-17 接受日期:2023-10-13 出版日期:2024-03-11 发布日期:2024-03-20
  • 通讯作者: 姜在炳,男,1970年生,研究员,博士生导师,主要从事煤地质与煤层气开发相关研究工作。E-mail: jiangzaibing@cctegxian.com
  • 作者简介:李浩哲,男,1990年生,助理研究员,博士研究生,主要从事煤层气开发与储层改造相关研究工作。E-mail: lihaozhe@cctegxian.com
  • 基金资助:
    国家科技重大专项(No.2016ZX05045002);天地科技创新创业资金专项重点项目(No.2022-2-TD-ZD007)。

Experimental study on dynamic propagation characteristics of fracturing crack across coal-rock interface

LI Hao-zhe1, 2, JIANG Zai-bing2, FAN Zong-yang3, PANG Tao1, 2, LIU Xiu-gang2, 4   

  1. 1. China Coal Research Institute, Beijing 100013, China; 2. CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an, Shaanxi 710077, China; 3. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 4. College of Emergency Management and Safety Engineering, China University of Minim and Technology-Beijing, Beijing 100083, China
  • Received:2023-07-17 Accepted:2023-10-13 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the National Science and Technology Major Project (2016ZX05045002) and the Tiandi Science and Technology Innovation and Entrepreneurship Fund Special Key Project (2022-2-TD-ZD007).

摘要: 针对跨煤岩界面穿层压裂裂缝动态扩展过程,采用相似材料制作煤岩组合体试件,开展三点弯曲试验、真三轴水力压裂物理模拟试验,分别结合数字散斑技术、声发射监测技术,捕捉裂缝的动态扩展特征,分析裂缝扩展形态及影响因素。结果表明:三点弯曲试验中裂缝可从顶板直接进入煤层,裂缝在界面处未转向,增大预制裂缝长度试件断裂所需的峰值应力降低;真三轴水力压裂试验条件下,由于煤层塑性强,顶板内裂缝高度、长度均大于煤层,顶板内声发射事件比例高于煤层;在裂缝穿层扩展的前提下,增大水平井与煤层顶面距离会导致裂缝穿层扩展时间延长,提高压裂液注入排量可增大裂缝进入煤层的穿透深度,但是易导致缝高失控、缝长降低,提出采用变排量压裂施工,初期压裂液大排量注入促使裂缝纵向穿层,随后降排量促进裂缝在顶板和煤层内横向延伸;多裂缝同步起裂时缝间存在竞争扩展现象,部分裂缝可能无法穿层扩展。研究成果可为掌握裂缝跨煤岩界面穿层扩展特点、优化设计压裂施工参数提供理论支撑。

关键词: 煤岩界面, 穿层压裂, 动态扩展, 数字散斑, 声发射

Abstract: To investigate the dynamic propagation process of the fracturing crack across the coal-rock interface, similar materials were used to prepare coal-rock combined specimens. Three-point bending tests and true triaxial hydraulic fracturing tests were carried out. By the digital speckle technology and the acoustic emission (AE) technology, the dynamic propagation characteristics of the fracturing crack were captured. The fracture pattern and its influencing factors were analyzed. The results show that in the three-point bending test, the crack can penetrate into the coal seam directly from the roof without changing direction at the interface. The peak stress required for the specimen fracturing is reduced while increasing the prefabricated crack length. In the true triaxial hydraulic fracturing test, due to the strong plasticity of the coal seam, the crack height and length in the roof are both larger than those in the coal seam, and the proportion of acoustic emission events in the roof is also higher than that in the coal seam. When the crack propagates across layers, increasing the distance between the horizontal well and the top surface of the coal seam will lead to the extension of the crack propagation time. Increasing the injection rate of the fracturing fluid can increase the penetration depth of the crack into the coal seam, but it is easy to cause the crack height to be out of control and the reduction of crack length. The fracturing method with variable injection rates was proposed. In the initial stage, the fracturing fluid injection with a large rate promotes the crack propagation across layers, and then the injection rate is reduced to promote the lateral propagation of the crack in the roof and coal seam. There is a competitive propagation phenomenon among cracks when multiple cracks are initiated synchronously, and part of the cracks can not propagate across layers. The research results can provide support for mastering the propagation characteristics of the crack across the coal-rock interface and optimizing the hydraulic fracturing parameters.

Key words: coal-rock interface, fracturing across layers, dynamic propagation, digital speckle, acoustic emission

中图分类号: 

  • TE355
[1] 赵扬锋, 丁玲, 王学滨, 樊艺, 荆 刚, . 断层黏滑失稳过程声-电信号响应特征研究[J]. 岩土力学, 2024, 45(4): 973-990.
[2] 朱泽奇, 田铠玮, 徐启钟, 崔岚, 盛谦, . 水力耦合作用下玄武岩启裂机制与临界水压研究[J]. 岩土力学, 2023, 44(S1): 83-90.
[3] 宋硕, 任富强, 常来山, . 含预应力锚杆煤岩组合体破坏及声发射特征试验研究[J]. 岩土力学, 2023, 44(S1): 449-460.
[4] 于洋, 王泽华, 唐才萱. 单轴压缩下酸腐蚀花岗岩能量演化与分形特征[J]. 岩土力学, 2023, 44(7): 1971-1982.
[5] 岳豪, 杨胜利, 翟瑞昊, 张燊, 崔轩. 含砂岩石力学特性及其致灾机制研究[J]. 岩土力学, 2023, 44(4): 1230-1244.
[6] 张光, 吴顺川, 张诗淮, 郭沛, . 砂岩单轴压缩试验P波速度层析成像及声发射特性研究[J]. 岩土力学, 2023, 44(2): 483-496.
[7] 罗丹旎, 卢思航, 苏国韶, 陶洪辉, . 含预制单裂隙花岗岩的真三轴单面临空岩爆试验研究[J]. 岩土力学, 2023, 44(1): 75-87.
[8] 郭佳奇, 程立攀, 朱斌忠, 田永超, 黄鑫. 持续开挖效应下结构面剪切力学性质与能量特征研究[J]. 岩土力学, 2023, 44(1): 131-143.
[9] 李冬冬, 盛谦, 肖明, 王小毛, . 基于改进颗粒流声发射片的地下厂房洞室围岩局部损伤细观机制研究[J]. 岩土力学, 2022, 43(S2): 117-129.
[10] 张东晓, 郭伟耀, 赵同彬, 谷雪斌, 陈玏昕, . 岩石I型裂纹定向扩展规律试验研究[J]. 岩土力学, 2022, 43(S2): 231-244.
[11] 王立, 倪彬, 谢伟, 王书昭, 寇坤, 赵奎, . 不同粒径黄砂岩微观−宏观裂纹演化机制研究[J]. 岩土力学, 2022, 43(S2): 373-381.
[12] 朱星, 刘汉香, 胡桔维, 范杰, . 砂岩破坏声发射临界慢化前兆特征试验研究[J]. 岩土力学, 2022, 43(S1): 164-172.
[13] 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, . 离散裂隙网络对岩石力学性质和声发射特性 影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552.
[14] 孙冰, 唐文福, 曾晟, 侯珊珊, 方耀楚, . 基于自组织临界理论的岩石声发射能量 与时间的统计分析[J]. 岩土力学, 2022, 43(9): 2525-2538.
[15] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .