岩土力学 ›› 2019, Vol. 40 ›› Issue (8): 3236-3246.doi: 10.16285/j.rsm.2018.0785

• 数值分析 • 上一篇    下一篇

基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析

吴凤元1, 2,樊赟赟3,陈剑平2,李军1   

  1. 1. 沈阳建筑大学 土木工程学院,辽宁 沈阳 110168;2. 吉林大学 建设工程学院,吉林 长春 130012; 3. 东北大学 资源与土木工程学院,辽宁 沈阳 110819
  • 收稿日期:2018-05-07 出版日期:2019-08-12 发布日期:2019-08-26
  • 通讯作者: 樊赟赟,男,1982年生,博士,副教授,主要从事地质灾害动力过程方面的研究。E-mail:yunyunfan@126.com E-mail:fywucivil@163.com
  • 作者简介:吴凤元,男,1989年生,博士,讲师,主要从事地质灾害动力过程方面的研究
  • 基金资助:
    国家重点研发计划项目(No. 2016YFC0801603);国家自然科学基金青年项目(No. 41201007);沈阳建筑大学科研创新培育计划项目 (No. CXPY2017016)。

Simulation analysis of dynamic process of debris flow based on different entrainment models

WU Feng-yuan1, 2, FAN Yun-yun3, CHEN Jian-ping2, LI Jun1   

  1. 1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang, Liaoning 110168, China; 2. College of Construction Engineering, Jilin University, Changchun, Jilin 130012, China; 3. School of Resources & Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China
  • Received:2018-05-07 Online:2019-08-12 Published:2019-08-26
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2016YFC0801603), the Young Scholars of National Natural Science Foundation of China (41201007) and the Nurture Fund for Research Innovation of Shenyang Jianzhu University (CXPY2017016).

摘要: 为实现高速崩滑碎屑流沿程侵蚀动力过程的模拟分析,采用连续理论方法对Nomash River碎屑流动力过程进行了数值模拟。其中,在连续理论模型中采用3种不同侵蚀速率模型,并采用HLLC近似Riemann解对有限体积数值离散控制体单元的界面通量进行了计算求解。致灾范围及运动时间的计算结果均与实际灾害情况吻合良好,验证了计算模拟的正确有效性,并对最终堆积深度、运动速度和侵蚀区域侵蚀深度进行了分析讨论。结果显示:采用McDougall侵蚀模型得到的最终堆积平均深度和最大深度与实测情况较为接近;每个时刻采用Medina侵蚀模型得到的最大速度值最大,其次是采用McDougall侵蚀模型的结果,最后是采用Pitman侵蚀模型的结果;采用McDougall侵蚀模型得到的侵蚀深度分布较为连续,其最大值8.1 m与估测值8 m比较接近,采用Medina侵蚀模型和Pitman侵蚀模型得到的侵蚀深度结果则较为分散,其最大值分别为10.9 m和8.6 m。

关键词: 碎屑流, 沿程侵蚀, 动力过程, 模型方程, 数值模拟

Abstract: Numerical simulation of the dynamic process of Nomash River debris flow was carried out using the continuous theory method in this study. Three different entrainment rate models were applied in the continuous theory model, and the HLLC approximate Riemann solution was used to calculate the interface flux of the control unit of the finite volume numerical discrete. Calculation results of disaster scope and motion time were in good agreement with the actual disaster situation, which verified the correctness and validity of the simulation. Then, the final accumulation depth, motion velocity and erosion depth were analyzed and discussed. The results showed that the average depth and maximum depth of final accumulation obtained using McDougall entrainment model were close to those measured. The maximum velocity obtained using the Medina entrainment model at each time was the largest, followed by the result of McDougall entrainment model and the result of Pitman entrainment model. The erosion depth distribution using McDougall erosion model was more continuous, and the maximum value of 8.1 m was close to the estimated value of 8 m. The erosion depth results obtained using Medina erosion model and Pitman erosion model were more dispersed, and their maximum values were 10.9 m and 8.6 m, respectively.

Key words: debris flow, entrainment of path material, dynamic process, model equation, numerical simulation

中图分类号: 

  • P 642.23
[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[3] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[4] 王东坡, 李沁泽, 毕钰璋, 刘浩. 碎屑流高风险区桩群防护结构优化布局研究[J]. 岩土力学, 2020, 41(4): 1323-1332.
[5] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[6] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[7] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[8] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[9] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[10] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[11] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[12] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[13] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[14] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[15] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!