›› 2008, Vol. 29 ›› Issue (S1): 655-658.

• 基础理论与实验研究 • 上一篇    下一篇

钱塘江边基坑的降水设计与监测

夏建中1,罗战友1,2,龚晓南2   

  1. 1. 浙江科技学院 建筑工程学院,杭州 310023;2. 浙江大学 岩土工程研究所,杭州 310027
  • 收稿日期:2008-07-24 出版日期:2008-11-11 发布日期:2016-04-15
  • 作者简介:夏建中,男,1965年生,教授,博士,从事地基处理、软黏土力学等方面的研究。
  • 基金资助:

    国家自然科学基金资助项目(No.50708097);中国博士后科学基金一等资助项目(No.20060400317);浙江省教育厅基金(No.20061459);浙江省高校青年教师资助计划项目(No.0202303005);浙江省高校中青年学科带头人资助计划项目

Dewatering design and monitoring of building foundation pit nearby Qiantang River

XIA Jian-zhong1, LUO Zhan-you1, 2, GONG Xiao-nan2   

  1. 1. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2008-07-24 Online:2008-11-11 Published:2016-04-15

摘要: 钱塘江由于钱江潮而引起水位偏高,如何保证在高水位条件下基坑的边坡安全及施工方便成为基坑支护的一个难 题。结合具体的工程实例,对钱塘江边的基坑工程进行了降水设计及水位监测,并对降水效果进行了分析。结果表明,针对钱塘江冲积平原的土层渗透系数大,采用自流式的深井进行降水是可行的,而且当钱塘江水位较高时可以采用截流深井进行综合降水处理。

关键词: 基坑, 降水, 地下水位, 监测

Abstract: The Qiantang River has high water level because of the tidewater. It is difficult question for foundation pit how to guarantee slope safety and construction convenience on the condition of high water level. The dewafering design and monitoring methods of building foundation pit nearby the Qiantang River are carried out according to the engineering case. The effects of foundation pit dewafering. The results show the foundation pit dewafering is effective by means of deep well for the soil layers of large permeability coefficient. When the water level of the Qiantang River is high, it is necessary to lower the high water lever by use of cut-off well.

Key words: foundation pit, dewafering, groundwater level, monitoring

中图分类号: 

  • TU 473
[1] 杨杰, 马春辉, 程琳, 吕高, 李斌, . 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2341-2353.
[2] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[3] 谷淡平, 凌同华, . 悬臂式型钢水泥土搅拌墙的水泥土 承载比和墙顶位移分析[J]. 岩土力学, 2019, 40(5): 1957-1965.
[4] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[5] 钟国强, 王 浩, 孔 利, 王成汤, . 基于T-S模糊故障树的地连墙+支撑支护 基坑坍塌可能性评价[J]. 岩土力学, 2019, 40(4): 1569-1576.
[6] 刘 勇, 冯 帅, 秦志萌. 基于运动角差的滑坡监测点相似性评判方法[J]. 岩土力学, 2019, 40(1): 288-296.
[7] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[8] 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350.
[9] 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362.
[10] 张 骁, 肖军华, 农兴中, 郭佳奇, 吴 楠, . 基于HS-Small模型的基坑近接桥桩开挖 变形影响区研究[J]. 岩土力学, 2018, 39(S2): 263-273.
[11] 郑 刚, 栗晴瀚, 哈 达, 程雪松, . 天津市承压层应力状态及减压引发沉降规律研究[J]. 岩土力学, 2018, 39(S2): 285-294.
[12] 董志宏, 钮新强, 丁秀丽, 翁永红, 黄书岭, 裴启涛, 张 练, . 乌东德左岸地下厂房洞室群施工期 围岩变形特征及反馈分析[J]. 岩土力学, 2018, 39(S2): 326-336.
[13] 吴建涛, 叶 霄, 李国维, 蒋 超, 曹雪山, . 高路堤下PHC桩加固软土地基的承载及变形特性[J]. 岩土力学, 2018, 39(S2): 351-358.
[14] 王克忠, 金志豪, 杨麦珍, 刘先亮, 刘 华, . 取水塔基坑开挖过程倒悬岩坎围堰渗透稳定性研究[J]. 岩土力学, 2018, 39(S2): 415-422.
[15] 肖晓春, 丁 鑫, 潘一山, 吕祥锋, 吴 迪, 王 磊, 樊玉峰, . 含瓦斯煤岩真三轴多参量试验系统研制及应用[J]. 岩土力学, 2018, 39(S2): 451-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[4] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[5] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[6] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[7] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[8] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[9] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .