›› 2006, Vol. 27 ›› Issue (S1): 46-50.

• 基础理论与实验研究 • 上一篇    下一篇

岩石流变损伤本构方程

万 玲1, 2,彭向和1, 2,杨春和3,任中俊1   

  1. 1. 重庆大学 资源及环境科学学院,重庆 400044;2. 重庆大学 西南资源开发及环境灾害控制工程教育部重点实验室,重庆 400044; 3. 中国科学院武汉岩土力学研究所,武汉 430071
  • 收稿日期:2006-05-22 发布日期:2006-12-15
  • 作者简介:万玲,女,1963年生,博士后,副教授,主要从事岩土力学方向的研究工作。
  • 基金资助:

    重庆市科委应用基础研究项目(No.7943)及重庆市自然科学基金项目(No.CSTC, 2004BB0060)资助.

A rheology damage constitutive equation of rocks

WAN Ling 1, 2, PENG Xiang-he,1, 2, YANG Chun-he3, REN Zhong-jun1   

  1. 1. College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; 2. Key Lab. for the Exploitation of Southwest Resources & Environmental Disaster Control Engineering, Ministry of Education, Chongqing University, Chongqing 400044, China; 3. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2006-05-22 Published:2006-12-15

摘要: 根据岩石材料的微结构机理,基于简单机械模型,通过在不可逆应变和牛顿时间所构成的空间中合理的定义广义时间、引入四阶各向异性损伤张量,建立了岩石的流变损伤本构方程。该模型能够考虑复杂应力状态下材料的响应特性,各向异性损伤及其损伤的方向特征,静水压力的影响等。发展了相应的数值分析方法,并根据泥岩三轴蠕变试验结果进行了验证。

关键词: 岩石, 流变, 损伤, 本构方程

Abstract: Based on the microstructure-mechanisms of rock materials and a simple mechanical model, a rheology damage constitutive equation is proposed by introducing generalized time defined in the space of irreversible strain and Newtonian time, and an anisotropic damage tensor of rank four. The anisotropic evolution and unilateral effect of damage as well as the effect of hydrostatic pressure can be taken into account in the proposed model. The corresponding numerical analysis is developed; and the creep, inelastic and damage behaviors of claystone are analyzed. It shows that the calculated results agree well with the experimental observation. The influence of stress level on the creep can be well described with the model.

Key words: rock, rheology, damage, constitutive equation

中图分类号: 

  • TU452
[1] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[2] 周辉, 陈珺, 张传庆, 朱勇, 卢景景, 姜玥, . 低强高脆岩爆模型材料配比试验研究[J]. 岩土力学, 2019, 40(6): 2039-2049.
[3] 田军, 卢高明, 冯夏庭, 李元辉, 张希巍. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074.
[4] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[5] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[6] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[7] 苏国韶, 燕思周, 闫召富, 翟少彬, 燕柳斌, . 真三轴加载条件下岩爆过程的声发射演化特征[J]. 岩土力学, 2019, 40(5): 1673-1682.
[8] 汪 杰, 宋卫东, 谭玉叶, 付建新, 曹 帅, . 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731-1739.
[9] 张 盛, 王龙飞, 常 旭, 王东坤, 王小良, 乔 洋, . 中心直裂纹半圆盘试样的石灰岩断裂韧度 尺寸效应试验研究[J]. 岩土力学, 2019, 40(5): 1740-1749.
[10] 张 伟, 曲占庆, 郭天魁, 孙 江. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008.
[11] 王 宇, 艾 芊, 李建林, 邓华锋, . 考虑不同影响因素的砂岩损伤特征 及其卸荷破坏细观特性研究[J]. 岩土力学, 2019, 40(4): 1341-1350.
[12] 李晓照, 戚承志, 邵珠山, 屈小磊, . 基于细观力学脆性岩石剪切特性演化模型研究[J]. 岩土力学, 2019, 40(4): 1358-1367.
[13] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[14] 王 涛, 刘斯宏, 郑守仁, 鲁 洋, . 掺复合浆液堆石料压缩特性试验研究[J]. 岩土力学, 2019, 40(4): 1420-1426.
[15] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔 凯,谌文武,张景科,韩文峰,梁收运. 多元层状边坡土体风蚀速率与微结构参数关系[J]. , 2009, 30(9): 2741 -2746 .
[2] 谈云志,孔令伟,郭爱国,冯 欣,万 智. 红黏土路基填筑压实度控制指标探讨[J]. , 2010, 31(3): 851 -855 .
[3] 荚颖,唐小微,栾茂田. 砂土液化变形的有限元-无网格耦合方法[J]. , 2010, 31(8): 2643 -2647 .
[4] 胡明鉴,汪 稔,陈中学,王志兵. 泥石流启动过程PFC数值模拟[J]. , 2010, 31(S1): 394 -397 .
[5] 潘 岳,李爱武,戚云松. 对“岩石蠕变变形的混沌特性研究”的讨论[J]. , 2010, 31(11): 3688 -3692 .
[6] 张建新,刘双菊,周嘉宾. 逆作基坑开挖卸荷对工程结构的影响分析[J]. , 2010, 31(S2): 218 -223 .
[7] 白 冰,李春峰. 地铁列车振动作用下近距离平行隧道的弹塑性动力响应[J]. , 2009, 30(1): 123 -128 .
[8] 胡昌斌,阙 云. 多遍冲击碾压混凝土路面时路基的动力响应分析[J]. , 2009, 30(8): 2517 -2522 .
[9] 刘 洋,赵明阶. 基于分形与损伤理论的岩石声–应力相关性理论模型研究[J]. , 2009, 30(S1): 47 -52 .
[10] 王亮清,P.H.S.W. Kulatilake,唐辉明,梁 烨,吴 琼. 双临空面岩质边坡滑动与倾倒破坏的运动学分析[J]. , 2011, 32(S1): 72 -77 .