›› 2016, Vol. 37 ›› Issue (2): 477-486.doi: 10.16285/j.rsm.2016.02.021

• 基础理论与实验研究 • 上一篇    下一篇

水泥基渗透结晶型防水材料对硫铝酸盐水泥固化土性能影响及机制分析

杨康辉,欧忠文,肖寒冰,莫金川,刘晋铭   

  1. 后勤工程学院 化学与材料工程系,重庆 401331
  • 收稿日期:2015-06-16 出版日期:2016-02-11 发布日期:2018-06-09
  • 通讯作者: 欧忠文,男,1965年生,博士,教授,博士生导师,从事工程抢修抢建材料研究。E-mail:ouzhongwen@sina.com E-mail:183451749@qq.com
  • 作者简介:杨康辉,男,1991年生,硕士研究生,主要从事工程抢修抢建材料研究。
  • 基金资助:

    后勤科研计划重点项目(No. BY211C016);重庆市基础与前沿研究计划项目(No. cstc2015jcyjA3005)。

Mechanism analysis and effect of cementitious capillary crystalline waterproofing materials on sulfur aluminate cement solidified soil

YANG Kang-hui, OU Zhong-wen, XIAO Han-bing, MO Jin-chuan, LIU Jin-ming   

  1. Department of Chemistry and Material Engineering, Logistical Engineering University, Chongqing 401311, China
  • Received:2015-06-16 Online:2016-02-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Key Projects of Logistics Research Program (BY211C016) and the Basic and Frontier Research Projects of Chongqing (cstc2015jcyjA3005).

摘要: 水泥土固化过程中Ca2+浓度会随水化反应的进行而逐步降低,导致水泥颗粒未完全水化,固化土强度增长受限,而水泥基渗透结晶型防水材料(CCCW)中活性物质能催化未水化水泥颗粒反应。选择硫铝酸盐水泥(SAC)为胶凝材料、CCCW为添加剂,通过单掺与复掺的方式,结合X射线衍射(XRD)、电镜扫描(SEM)表征,分析了固化土的无侧限抗压强度、水稳定性、耐干湿循环性能及微观结构。结果表明,复掺16%混合料(4%CCCW+12%SAC)的固化土强度是同掺量下单掺SAC固化土强度的1.5倍,且比单掺20%SAC的固化土强度高1.41 MPa;复掺16%混合料(4%CCCW+12%SAC)的固化土泡水2~8 d软化系数平均达0.97,而同掺量下SAC固化土平均仅为0.73;单掺的固化土强度随干湿循环次数增加逐级降低,而复掺混合料的固化土强度呈波浪式发展;CCCW中活性物质能增加固化土中钙矾石生成量并修复微裂缝,钙矾石长径比显著增大,可直接连接两个甚至多个土颗粒,形成三维网状结构,显著提高结晶体的微观加筋、骨架及填充作用,改善SAC固化土强度、水稳定性及耐干湿循环性能。

关键词: 固化土, 水泥基渗透结晶型防水材料(CCCW), 无侧限抗压强度, 水稳定性, 干湿循环, 微观结构

Abstract: The strength development of solidified soil would be limited by the incompletely hydrated cement particles for the gradually reduced Ca2+ concentrations as the hydration reaction proceeds. Theoretically the unhydrated cement particles would be catalyzed by the active substances in cementitious capillary crystalline waterproofing (CCCW) materials. Using sulfur aluminate cement (SAC) as cementitious material, CCCW as additive, a series of experiments was conducted in a single-mixed or admixed way. The properties of solidified soil including unconfined compressive strength (UCS), water stability, the ability resisting wetting-drying cycles and microstructure were analyzed with X-ray diffraction (XRD) and scanning electron microscope (SEM) characterization. The results show that the UCS of soil solidified by 16% mixture (4% CCCW+12% SAC) is 1.5 times the soil solidified by the same content of SAC and 1.41 MPa higher than the soil solidified by 20% SAC. The average softening coefficient of the soil solidified by 16% mixture (4% CCCW+12% SAC) reaches 0.97 after 2-8 days soaking in water while only 0.73 of the soil solidified by SAC. The UCS of soil solidified with single-mixed gradually decreases with the increase of wetting-drying cycles while wavy development of solidified soil with admixed. The generation amount of AFt increases and the microfractures are repaired in solidified soil by the active substances in CCCW. Two or more soil particles are connected by AFt and a three-dimensional net structure is formed with a significantly increased aspect ratio. It is shown that the properties of soil solidified by SAC including the UCS, water stability, ability resisting wetting and drying cycles are improved due to the application of CCCW.

Key words: solidified soil, cementitious capillary crystalline waterproofing materials (CCCW), unconfined compressive strength, water stability, wetting and drying cycles, microstructure

中图分类号: 

  • TU 449

[1] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[2] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[3] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[4] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[5] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[6] 杜宇翔, 盛谦, 王帅, 付晓东, 罗红星, 田明, 王立纬, 梅鸿儒. 昔格达组半成岩微观结构与力学性质研究[J]. 岩土力学, 2020, 41(4): 1247-1258.
[7] 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885.
[8] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[9] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[10] 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40.
[11] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[12] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[13] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[14] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[15] 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!