›› 2018, Vol. 39 ›› Issue (6): 2017-2024.doi: 10.16285/j.rsm.2016.1924

• 基础理论与实验研究 • 上一篇    下一篇

峰后围压卸载对原煤变形和渗透特性的影响

刘 超1, 2, 3,张东明1, 2, 3,尚德磊1, 2, 3,赵宏刚1, 2, 3,宋真龙1, 2, 3,俞 欢1, 2, 3   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400030;2. 重庆大学 资源及环境科学学院,重庆 400030; 3. 重庆大学 复杂煤气层瓦斯抽采国家地方联合工程实验室,重庆 400030
  • 收稿日期:2016-10-31 出版日期:2018-06-11 发布日期:2018-07-03
  • 通讯作者: 张东明,男,1973年生,博士,教授,博士生导师,主要从事煤矿安全与岩土工程方面的教学与研究工作。E-mail: zhangdm@cqu.edu.cn E-mail:1712594246@qq.com
  • 作者简介:刘超,男,1990年生,博士研究生,主要从事矿山岩石力学、煤矿灾害动力学与控制方面的研究。
  • 基金资助:

    国家自然科学基金(No.51434003,No.51374256)

Influence of confining pressure unloading at post-peak on deformation and permeability characteristics of raw coal

LIU Chao1, 2, 3, ZHANG Dong-ming1, 2, 3, SHANG De-lei1, 2, 3, ZHAO Hong-gang 1, 2, 3, SONG Zhen-long1, 2, 3, YU Huan1, 2, 3   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China; 2. College of Resources and Environmental Sciences, Chongqing University, Chongqing 400030, China; 3. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing 400030, China
  • Received:2016-10-31 Online:2018-06-11 Published:2018-07-03
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51434003, 51374256).

摘要: 运用自主研制的煤岩热-流-固耦合试验系统,以原煤为研究对象,进行峰后轴压保持在不同应力水平下围压的卸载试验,以分析围压卸载对原煤变形特性和渗透特性的影响。研究结果表明:通过径向应变 、轴向应变 和体应变 的不可恢复变形量以及三者在力加载过程中的响应程度来定义损伤变量,满足损伤变量的变化区间[0, 1],并以此计算煤样在卸载过程中的损伤量,得到在峰后轴压 保持不变,对围压 进行卸载时,损伤量D随着 的减小而增大,煤样的损伤程度越来越大;当轴压卸荷到不同应力时,煤样的渗透率随围压卸载次数的增加而增大,表明当 减小时, 对渗透率的影响越来越重要,同时煤样内部的孔隙裂隙以发育、扩展、延伸为主。此外,渗透率k在 卸载初期,几乎不增加;当 继续卸载时, 开始增大,并且斜率越来越大,表明煤样的损伤加剧。当保持 不变,对 进行卸载时,相当于摩尔应力圆半径增大,煤样向破坏的趋势发展,发生二次破坏的可能性增大。随着 的卸载,卸围压前 越大,摩尔应力圆半径越大,煤样的承载能力就越弱,更易发生煤样的二次破坏,表现在煤样的轴向应变 和径向应变 发生突变。

关键词: 围压卸载, 损伤, 损伤变量表达式, 渗透率, 摩尔应力圆, 二次破坏

Abstract: In this study, experiments were conducted on raw coal specimens by using the self-developed triaxial servo-controlled seepage equipment for thermo-hydro-mechanical coupling of coal containing methane. Experiments were carried out when the axial pressure maintained at different stress levels but the confining pressure was unloaded. We studied the effects of unloading confining pressure on deformation properties and permeability characteristics of gas-filled coal at the post-peak. The results showed that the damage variable was defined by the unrecoverable deformations of radial strain , axial strain and volumetric strain and the response of these three parameters during the process of unloading. The interval [0, 1] of damage variable was satisfied to calculate the damage quantity of coal specimen in the process of unloading. When the axial pressure remained constant and the confining pressure was unloaded, the amount of damage quantity D increased with the decrease of and the damage degree of coal specimen increased greatly. When unloading the axial pressure to different stress levels, the permeability of coal specimen increased with the growing unloading times of confining pressure. It indicated that the influence of confining pressure on permeability was more and more important when decreased. At the same time, the pores and fractures in the coal specimen were developed, expanded and extended. In addition, the permeability k hardly increased at the beginning of unloading . As continued to unload, k began to increase and the slope became growing, indicating the severe damage of coal specimen. The radius of Mohr stress circle was equivalent to an increase under this stress path of loading and unloading, and coal specimens tended to destruction causing the increasing possibility of the occurrence of secondary failure. At the higher level of , with the unloading of , the radius of Mohr stress circle increased and the supportability of coal specimens became weaker. Hence, the secondary failure easily occurred, which manifested the abrupt change of axial strain and radial strain .

Key words: confining pressure unloading, damage, damage variable expression, permeability, Mohr stress circle, secondary failure

中图分类号: 

  • TD 712
[1] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[2] 秦庆词, 李克钢, 杨宝威, 王 庭, 张雪娅, 郭 文. 岩石全应力-应变过程关键特征点损伤特征分析[J]. 岩土力学, 2018, 39(S2): 14-24.
[3] 刘 港,马凤山,赵海军,冯雪磊,郭 捷,. 考虑统计损伤模型的非均质节理岩体拉剪破坏机制研究[J]. , 2018, 39(S1): 9-20.
[4] 方祥位,李晶鑫,李 捷,申春妮,. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. , 2018, 39(S1): 1-8.
[5] 李玉丹,董平川,周大伟,吴子森,汪 洋,曹 耐. 页岩气藏微裂缝表观渗透率动态模型研究[J]. , 2018, 39(S1): 42-50.
[6] 蔡婷婷,冯增朝,赵 东,姜玉龙,. 基于硬化-损伤机制的贫煤蠕变本构模型研究[J]. , 2018, 39(S1): 61-68.
[7] 杨秀荣,姜谙男,江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. , 2018, 39(S1): 167-174.
[8] 曾严谨,荣 冠,彭 俊,沙 松, . 高温循环作用后大理岩裂纹扩展试验研究[J]. , 2018, 39(S1): 220-226.
[9] 王 伟,方志明,李小春, . 沁水盆地煤样静水压力下渗透率实验及模型分析[J]. , 2018, 39(S1): 251-257.
[10] 高 强,张强勇,张绪涛,向 文,. 深部洞室开挖卸荷分区破裂机制的动力分析[J]. , 2018, 39(9): 3181-3194.
[11] 冯晓伟,王 伟,王如宾,袁双双,朱其志, . 考虑水化学损伤的砂岩流变损伤本构模型[J]. , 2018, 39(9): 3340-3346.
[12] 陈子全,何 川,董唯杰,马杲宇,潘旭勇,裴成元,. 北疆侏罗系与白垩系泥质砂岩物理力学特性对比分析及其能量损伤演化机制研究[J]. , 2018, 39(8): 2873-2885.
[13] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
[14] 向 高,刘建锋,李天一,徐杨梦迪,邓朝福,吴 池,. 基于声发射的盐岩变形破坏过程的分形与损伤特征研究[J]. , 2018, 39(8): 2905-2912.
[15] 刘 镇,周翠英,陆仪启,林振镇, . 软岩水-力耦合的流变损伤多尺度力学试验系统的研制[J]. , 2018, 39(8): 3077-3086.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周 勇,朱亚薇, . 深基坑桩锚支护结构和土体之间协同作用[J]. , 2018, 39(9): 3246 -3252 .
[2] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[3] 肖世国 ,何 洪,. 双排抗滑桩上滑坡推力近似解析方法[J]. , 2015, 36(2): 376 -380 .
[4] 郭林坪,孔令伟,徐 超,杨爱武,. 静力触探参数自相关距离确定方法与影响因素分析[J]. , 2017, 38(S1): 271 -276 .
[5] 李国英 ,米占宽 ,傅 华 ,方维凤,. 混凝土面板堆石坝堆石料流变特性试验研究[J]. , 2004, 25(11): 1712 -1716 .
[6] 梁永恒,邵生俊,王桃桃. 西安地裂缝活动现状及地铁隧道建设应对措施[J]. , 2009, 30(S2): 399 -403 .
[7] 魏厚振,颜荣涛,陈 盼,田慧会,吴二林,韦昌富. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. , 2011, 32(S2): 198 -203 .
[8] 陈智强,张永兴,周检英. 基于数字散斑技术的深埋隧道围岩岩爆倾向相似材料试验研究[J]. , 2011, 32(S1): 141 -148 .
[9] 王志良,年玉泽,申林方,徐则民,. 植被发育斜坡土体大孔隙三维重构模型渗流场的LBM数值模拟[J]. , 2018, 39(10): 3821 -3829 .
[10] 池泽成,陈善雄,周 哲,戴张俊,宋瑞军, . 合肥重塑膨胀土三向膨胀力试验研究[J]. , 2017, 38(S1): 381 -386 .