›› 2018, Vol. 39 ›› Issue (10): 3891-3899.doi: 10.16285/j.rsm.2017.2395

• 测试技术 • 上一篇    下一篇

光纤光栅传感技术在GFRP抗浮锚杆现场拉拔试验中的应用

白晓宇1, 2,张明义1, 2,匡 政1,王永洪1,闫 楠3,朱 磊1   

  1. 1. 青岛理工大学 土木工程学院,山东 青岛 266033;2. 青岛理工大学 蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033; 3. 青岛大学 环境科学与工程学院,山东 青岛,266071
  • 收稿日期:2017-12-01 出版日期:2018-10-11 发布日期:2018-11-04
  • 通讯作者: 张明义,男,1958年生,博士,教授,主要从事土力学及地基基础的试验、教学和研究工作。E-mail: zmy58@163.com E-mail:baixiaoyu538@163.com
  • 作者简介:白晓宇,男,1984年生,博士(后),副教授,主要从事地基基础及地下工程领域的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51708316,No. 51778312,No. 51809146);山东省重点研发计划(No. 2017GSF16107,No. 2018GSF117008);山东省自然科学基金(No. ZR2016EEQ08,No. ZR2017PEE006);山东省高等学校科技计划(No. J16LG02);青岛市应用基础研究计划(No. 16-5-1-39-jch);中国博士后科学基金面上项目(No. 2018M632641)。

Application of fiber grating sensing technology in pull-out test on glass fiber reinforced polymer anti-floating anchor

BAI Xiao-yu1, 2, ZHANG Ming-yi1, 2, KUANG Zheng1, WANG Yong-hong1, YAN Nan3, ZHU Lei1   

  1. 1. College of Civil Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, China; 2. Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao, Shandong 266033, China; 3. College of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2017-12-01 Online:2018-10-11 Published:2018-11-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708316, 51778312, 51809146), the Shandong Key Research and Development Program (2017GSF16107, 2018GSF117008), the Shandong Provincial Natural Science Foundation (ZR2016EEQ08, ZR2017PEE006), the Higher Educational Science and Technology Program of Shandong Province (J16LG02), the Applied Basic Research Programs of Qingdao (16-5-1-39-jch) and the General Program of China Postdoctoral Science Foundation (2018M632641).

摘要: 光纤测试技术是将光纤布拉格光栅(FBG)传感器用光纤连成一串,通过构建多点光栅测试系统实现传感,它具有精度高、抗干扰能力强、空间分辨率高和连续数据采集等特点。将光纤光栅传感技术应用到原型玻璃纤维增强复合材料(GFRP)抗浮锚杆受力测试中,同步测试了锚杆杆体-锚固体界面、锚固体-周围岩土体界面以及锚固体内的应变,实现GFRP抗浮锚杆多界面全长受力测试。测试结果表明,光纤光栅传感技术能准确记录拉拔过程中GFRP抗浮锚杆各界面的应变变化,揭示锚杆杆体-锚固体界面、锚固体内、锚固体-周围岩土体界面的轴向应力和剪应力分别随荷载水平和锚固深度变化的分布规律,但不同界面处荷载的传递深度和剪应力沿深度的影响范围有所差异。该测试技术和传感器埋设工艺有众多优势,在岩土工程科学研究与工程应用领域具有广阔的前景。

关键词: 地铁, GFRP抗浮锚杆, 光纤光栅传感技术, 微型FBG应变传感器, 锚固体, 剪应力

Abstract: The optical fiber testing technology is stringing the fiber Bragg grating (FBG) by naked fibers in order to construct the multi-point sensing testing system, which has the advantages such as higher precision, stronger anti-interference ability, higher spatial resolution and continuous data acquisition. In this paper, the fiber grating sensing technology was applied to monitor the glass fiber reinforced polymer (GFRP) anti-floating anchor, and the strains at the interfaces of anchor-anchorage body, anchorage body- surrounding rock, and within anchorage body were measured, achieving the multi-interfacial and full-length measurement of GFRP anti-floating anchor. The results showed that the fiber grating sensing technology was able to accurately record the strain change of GFRP anti-floating anchor in the entire duration of the pull-out test. Additionally, the results revealed the distribution law of axial force and shear stress within the anchorage body and at the interfaces of anchor-anchorage body, anchorage body-surrounding rock with the change of applied load and depth. The transfer depth of the load and the influenced range of the shear stress were different at different interfaces. Generally, the measurement technology and sensor embedding method have many advantages, showing broad prospects in geotechnical engineering research and applications.

Key words: metro, GFRP anti-floating anchor, fiber grating sensing technology, micro FBG strain sensor, anchorage body, shear stress

中图分类号: 

  • TU 413
[1] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[2] 朱才辉, 兰开江, 段宇, 贺红, . 西安地铁“先隧后井”法横通道施工控制技术研究[J]. 岩土力学, 2020, 41(S1): 379-386.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 丁智, 张霄, 金杰克, 王立忠, . 基坑全过程开挖及邻近地铁隧道变形实测分析[J]. 岩土力学, 2019, 40(S1): 415-423.
[5] 孔亮, 刘文卓, 袁庆盟, 董彤, . 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9): 3319-3326.
[6] 陈文化, 张谦. 地铁列车进出站时土层空间振动特性分析[J]. 岩土力学, 2019, 40(9): 3656-3661.
[7] 孙飞, 张志强, 易志伟. 正断层黏滑错动对地铁隧道结构影响 的模型试验研究[J]. 岩土力学, 2019, 40(8): 3037-3044.
[8] 杜文, 王永红, 李利, 朱连臣, 朱浩天, 王有旗, . 双层车站密贴下穿既有隧道案例分析及 隧道沉降变形特征[J]. 岩土力学, 2019, 40(7): 2765-2773.
[9] 言志信, 龙哲, 屈文瑞, 张森, 江平, . 地震作用下含软弱层岩体边坡锚固 界面剪切作用分析[J]. 岩土力学, 2019, 40(7): 2882-2890.
[10] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[11] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[12] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[13] 张景科, 单婷婷, 王玉超, 王 南, 樊 孟, 赵林毅, . 土遗址锚固土体-浆体(CGN+C)界面力学性能[J]. 岩土力学, 2019, 40(3): 903-912.
[14] 吴小锋, 朱斌, 汪玉冰, . 水平环境荷载与地震动联合作用下的海上风机 单桩基础动力响应模型试验[J]. 岩土力学, 2019, 40(10): 3937-3944.
[15] 纪文栋,张宇亭,王 洋,裴文斌, . 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. , 2018, 39(S1): 282-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!