›› 2018, Vol. 39 ›› Issue (11): 4226-4231.doi: 10.16285/j.rsm.2017.0394

• 岩土工程研究 • 上一篇    下一篇

微型桩组合抗滑结构受力机制的现场试验研究

王 洋1,冯 君1, 2,谢先当1,赖 冰1,杨 涛1   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031
  • 收稿日期:2017-03-08 出版日期:2018-11-10 发布日期:2018-11-15
  • 通讯作者: 冯君,男,1977 年生,博士,副教授,主要从事岩土力学方面的教学与研究工作。E-mail: fengjun4316@163.com E-mail:wy_0127@163.com
  • 作者简介:王洋,男,1992年生,硕士,主要从事岩土锚固方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 51178402);高速铁路线路工程教育部重点实验室资助(No. 20141028)。

In-situ experimental study of anti-siding mechanism of micro-pile combined structure

WANG Yang1, FENG Jun1, 2, XIE Xian-dang1, LAI Bing1, YANG Tao1   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-Speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2017-03-08 Online:2018-11-10 Published:2018-11-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51178402) and the Key Laboratory of High-Speed Railway Engineering, Ministry of Education (20141028).

摘要: 针对有顶板连接的“八”字形微型桩组合结构,依托广大(广通至大理)线扩能改造工程,现场监测微型桩工作状态下轴力变化,对微型桩组合支护体系应用于分级开挖边坡加固的受力机制进行研究分析。结果表明:在滑坡推力作用下,各排桩桩身轴向力的分布形式不尽相同,沿推力方向依次呈现出反“S”型、“双弓”型和“S”型的分布规律;各排桩峰值轴力均为拉力,比例关系为:靠山侧桩:中间桩:靠路侧桩=2.5:4.1:3.2,其中靠山侧桩最大轴力出现在桩体下部,中间桩出现在中上部,靠路侧桩最大轴力出现在桩体上部;顶部承台对有斜桩的微型桩群的制约协调作用比一般的竖直桩群显著,水平荷载作用下的桩群易发生较大的挠曲变形,在群桩效应、坡体滑裂面等的综合影响下,引发桩体拉-压等受力形式的转变;组合结构的受力机制表现为先承受滑坡主推力的前两排桩受拉,第3排桩底部嵌固段受压,且随着持续推力作用受压区存在向上发展趋势;各单桩桩身轴力以拉力为主,有利于内部钢筋受拉优势的发挥。

关键词: 微型桩组合结构, 现场试验, 轴力监测, 抗滑机制

Abstract: In view of the “eight” shaped micro-pile composite structure with a roof connection, relying on the upgrading project of the Guangtong-Dali railway, in-situ test of micro-pile combined structure to reinforce stage excavation landslide was carried out to study the anti-siding mechanism. The results show that under the action of sliding thrust, the axial force distribution of each row of piles was different, and the distribution law of anti “S”, “double bow” and “S” was successively presented along the thrust direction. The peak axial force of each row of piles was tension, and the proportion of the side piles of the mountain: the middle piles: the roadside piles was 2.5:4.1:3.2. The maximum axial force of the side piles of the mountain was at the lower part of the piles, the middle piles appeared at the middle and upper part, and the roadside piles appeared at the upper part of the pile body. The coordination effect of the top cap on the inclined pile group was more significant than that of the general vertical pile group. The pile group under horizontal load was prone to large flexure deformation. Under the combined influence of pile group effect and slip surface, the transfer of tension and pressure forms of pile body were generated. The force mechanism of the composite structure is that: the first two rows of piles are subjected to tension, the bottom embedded section of the third row piles is compressed, and the compression zone demonstrates upward trend with the continuous load. Our results also show that the axial force of the single pile is dominated by the tension force, which is beneficial to the exertion of the internal steel in tension.

Key words: micro-pile combined structure, in-situ experiment, axial force monitoring, anti-siding mechanism

中图分类号: 

  • TU 473
[1] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[2] 李任融, 孔纲强, 杨庆, 孙广超. 流速对桩−筏基础中能量桩换热效率 与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1): 264-270.
[3] 韩冬冬, 门玉明, 胡兆江. 土质滑坡格构锚杆抗滑机制及受力试验研究[J]. 岩土力学, 2020, 41(4): 1189-1194.
[4] 陆晨凯, 孔纲强, 孙广超, 陈斌, 殷高翔, . 桩−筏基础中能量桩热−力耦合特性现场试验[J]. 岩土力学, 2019, 40(9): 3569-3575.
[5] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[6] 吴爽爽, 胡新丽, 龚辉, 周昌, 徐楚, 王强, 应春业, . 3种模式下钻孔灌注桩桩-土剪切特性 现场试验研究[J]. 岩土力学, 2019, 40(7): 2838-2846.
[7] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[8] 李 驰, 王 硕, 王燕星, 高 瑜, 斯日古楞, . 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
[9] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[10] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[11] 任连伟, 孔纲强, 郝耀虎, 刘汉龙, . 基于能量桩现场试验的土体综合热导率系数研究[J]. 岩土力学, 2019, 40(12): 4857-4864.
[12] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[13] 王炳龙,梅 祯,肖军华. 土工格室补强路基整治路基病害的试验研究[J]. , 2018, 39(S1): 325-332.
[14] 郭 飞,陶连金,孔 恒,马红红,张丽丽,张新全,. 兰州砂卵石地层盾构施工振动传播及衰减特性分析[J]. , 2018, 39(9): 3377-3384.
[15] 喻豪俊,彭社琴,赵其华,. 碎石土斜坡水平受荷桩承载特性研究[J]. , 2018, 39(7): 2537-2545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!