岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 193-205.doi: 10.16285/j.rsm.2022.0261

• 基础理论与实验研究 • 上一篇    下一篇

基于微观结构重塑的非饱和冻土导热系数预测

黄献文1, 2,姚直书2,蔡海兵2,李凯奇3,唐楚轩4   

  1. 1. 苏州科技大学 土木工程学院,江苏 苏州 215000;2. 安徽理工大学 土木建筑学院 安徽 淮南 232000;3. 武汉大学 水利水电学院, 湖北 武汉 430072;4. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2022-03-07 接受日期:2022-07-22 出版日期:2023-01-16 发布日期:2023-01-13
  • 通讯作者: 姚直书,男,1963年生,硕士,教授,主要从事矿井建设,冻土工程等方面的教学和研究工作。E-mail: zsyao@aust.edu.cn E-mail: huangxianwen194@163.com
  • 作者简介:黄献文,男,1994年生,博士,讲师,主要从事岩土工程,工程热物理等方面研究。
  • 基金资助:
    国家留学基金(No. 202108340062);国家自然科学基金(No. 52174104,No. 51778004)。

Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling

HUANG Xian-wen1, 2, YAO Zhi-shu2, CAI Hai-bing2, LI Kai-qi3, TANG Chu-xuan4   

  1. 1. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215000, China; 2. School of Civil Engineering, Anhui University of Science and Technology, Huainan, Anhui 232000, China; 3. School of Water Resources and Hydropower, Wuhan University, Wuhan, Hubei 430072, China; 4. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-03-07 Accepted:2022-07-22 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by China Scholarship Council (202108340062) and the National Natural Science Foundation of China (52174104, 51778004).

摘要:

为预测非饱和冻土的导热性能,基于土体微观结构,提出了非饱和冻土特征结构识别算法和多元素生成算法,并将该算法与传统有限单元法组合,建立非饱和冻土导热系数蒙特卡洛预测模型。通过土体SEM电镜图像,采用逆向四参数增长识别法识别土体中各组分含量、大小以及各方向分布概率;改进传统的四参数随机增长法,提出了考虑土、水、冰和气的多元素生成算法;基于生成的非饱和冻土模型,通过蒙特卡洛方法获得非饱和冻土导热系数,并与规范中冻土导热系数进行对比,验证了蒙特卡洛法预测模型的合理性(平均误差<4%);通过多因素分析研究孔隙率、颗粒大小、土体导热性、饱和度以及结冰率对非饱和冻土导热性影响,各因素与导热系数的相关系数依次为:−0.352、−0.098、0.641、0.520和0.060,影响大小为:土颗粒导热性>饱和度>孔隙率>土颗粒大小>结冰率。各影响因素对非饱和冻土导热系数影响可以归纳为对热通量形成“热链”密度、宽度、连通性、热流承载力以及对“热桥”通量的影响。

关键词: 非饱和冻土, 微结构模拟, 结构相关性, 四参数随机增长法, 蒙特卡洛方法, 导热系数

Abstract: In order to accurately predict the thermal conductivity of unsaturated frozen soil, the characteristic structure identification method and reconstruction method of unsaturated frozen soil were proposed based on the soil microstructure images, and the prediction model of the thermal conductivity of unsaturated frozen soil was established by combining these methods and the conventional finite element method. Through scanning electron microscope (SEM) images, the content, size and distribution probability of each component were identified by antidromic quartet structure generation set (AQSGS) method. A multi-element quartet structure generation set method considering soil, water, ice and gas (MQSGS method) was proposed to improve the conventional quartet structure generation set (QSGS) method. Based on the established unsaturated frozen soil model, the thermal conductivity of unsaturated frozen soil was obtained through Monte Carlo method, and compared with the thermal conductivity of frozen soil in the specification, which verified the rationality of the prediction model (average error <4%). The influences of porosity, particle size, soil particle thermal conductivity, degree of saturation and freezing rate on the thermal conductivity of unsaturated frozen soil were studied by multi-factor analysis. The correlation coefficients between each influencing factor and thermal conductivity were −0.352, −0.098, 0.641, 0.52 and 0.06, respectively. The influence sequences were soil particle thermal conductivity > degree of saturation > porosity > soil particle size > freezing rate. The effects of various influencing factors on the thermal conductivity of unsaturated frozen soil can be summarized as the influences on the density, width, connectivity, heat flow capacity of "thermal chain" formed by heat flux and "thermal bridge" flux.

Key words: unsaturated frozen soil, microstructure simulation, structural correlation, quartet structure generation set method, Monte Carlo method, thermal conductivity

中图分类号: 

  • TU 411
[1] 曾召田, 梁珍, 邵捷昇, 徐云山, 吕海波, 潘斌, . 碱−热环境下MX80膨润土导热性能试验研究[J]. 岩土力学, 2022, 43(S2): 155-162.
[2] 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96.
[3] 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374.
[4] 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340.
[5] 杨高升, 白冰, 姚晓亮, 陈佩佩, . 非饱和冻土水汽迁移与相变过程的 光滑粒子法模拟[J]. 岩土力学, 2021, 42(1): 291-300.
[6] 谈云志, 彭帆, 钱芳红, 孙德安, 明华军, . 石墨−膨润土缓冲材料的最优配置方法[J]. 岩土力学, 2019, 40(9): 3387-3396.
[7] 费锁柱, 谭晓慧, 孙志豪, 杜林枫. 基于微结构模拟的土体自相关距离分析[J]. 岩土力学, 2019, 40(12): 4751-4758.
[8] 谢敬礼,马利科,高玉峰,曹胜飞,刘月妙. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. , 2018, 39(8): 2823-2828.
[9] 陈之祥,李顺群,夏锦红,张勋程,桂 超,. 基于未冻水含量的冻土热参数计算分析[J]. , 2017, 38(S2): 67-74.
[10] 叶万军,董西好,杨更社,陈 强,彭瑞奇,刘 宽. 含水率和干密度对黄土热参数影响的试验研究[J]. , 2017, 38(3): 656-662.
[11] 董西好,叶万军,杨更社,吴 迪,申艳军,刘 慧,. 温度对黄土热参数影响的试验研究[J]. , 2017, 38(10): 2888-2894.
[12] 何春木 ,邱战洪 ,陈合龙 ,熊 浩 ,朱兵见 ,刘子振,. 南方地区城市生活垃圾导热系数的试验研究[J]. , 2015, 36(4): 1057-1062.
[13] 吴礼舟,许 强,黄润秋. 非饱和黏土的冻胀融沉过程分析[J]. , 2011, 32(4): 1025-1028.
[14] 谭贤君,褚以惇,陈卫忠,戴永浩,陈培帅. 考虑冻融影响的岩土类材料导热系数计算新方法[J]. , 2010, 31(S2): 70-74.
[15] 原喜忠,李 宁,赵秀云,李 婧. 非饱和(冻)土导热系数预估模型研究[J]. , 2010, 31(9): 2689-2694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .