岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 588-600.doi: 10.16285/j.rsm.2023.0230

• 数值分析 • 上一篇    下一篇

基于离散元的岩石冻融损伤劣化机制研究

贾朝军1,庞锐锋1,俞隽2,雷明锋1,李忠3   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 南通大学 交通与土木工程学院,江苏 南通 226019; 3. 湖南铁院土木工程检测有限公司,湖南 长沙 410075
  • 收稿日期:2023-02-24 接受日期:2023-06-07 出版日期:2024-02-11 发布日期:2024-02-07
  • 通讯作者: 俞隽,男,1988年生,博士,讲师,主要从事岩石多场多尺度本构关系及岩体工程应用等方面的研究工作。E-mail:yujunhjsl@foxmail.com
  • 作者简介:贾朝军,男,1989年生,博士,副教授,主要从事隧道工程方面的研究。jiachaojun@csu.edu.cn
  • 基金资助:
    国家自然科学基金(No. 52008403)

Investigation on freeze-thaw damage mechanism of porous rock with discrete element method

JIA Chao-jun1, PANG Rui-feng1, YU Jun2, LEI Ming-feng1, LI Zhong3   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. School of Transportation and Civil Engineering, Nantong University, Nantong, Jiangsu 226019, China; 3. Hunan Tieyuan Civil Engineering Testing Co., Ltd., Changsha, Hunan 410075, China
  • Received:2023-02-24 Accepted:2023-06-07 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52008403).

摘要: 冻融损伤岩石的劣化机制研究对于认识冻融灾害机制、灾变预测与寒区隧道防护体系设计具有重要理论意义。基于体积膨胀理论,建立了冻融过程中不可逆体积增加与冻融次数的关系方程,推导了冻融循环过程中圆柱形试样热量径向传递规律。考虑饱和试样冻融损伤过程,建立了基于离散元的岩石冻融损伤模型。开展了不同冻融循环次数的砂岩物理力学性质测试,通过应力-应变曲线及单轴抗压强度验证了该模型的有效性。在此基础上,分析了冻融循环过程中岩石试样中裂纹生长规律及层进式分布特征,研究了冻融-应力耦合条件下岩石试样裂纹扩展过程。研究结果表明:随着冻融循环次数的增加,裂纹的发育经历了缓慢增长、快速增长及趋于稳定3个发展阶段。裂纹数沿径向方向由内而外层进式增加,80%左右的冻胀裂纹分布在距离试样轴心10~25 mm的圆环柱区域内。当冻融次数小于80次时,裂纹数随距圆心距离的增加呈指数函数关系;当冻融次数大于80次时,裂纹数与距圆心距离呈对数函数关系。冻融循环过程中,试样内的破坏以拉伸破坏为主,岩石的冻融损伤过程受初始孔隙结构控制。

关键词: 冻融损伤, 离散元方法, 体积膨胀, 热传导, 裂纹

Abstract: The study of the degradation mechanism of freeze-thaw damaged rock holds significant theoretical importance in understanding freeze-thaw disasters, predicting disasters, and designing tunnel protection systems in cold regions. Based on the volume expansion theory, this research establishes a correlation between irreversible volume increase and the number of freeze-thaw cycles, and also deduces the law of radial heat transfer for cylindrical samples during freeze-thaw cycles. Considering the freeze-thaw damage process of saturated samples, a model of rock freeze-thaw damage based on discrete elements is developed. The physical and mechanical properties of sandstone with different freeze-thaw cycles are tested to validate the model, using stress-strain curves and uniaxial compressive strength. Building upon this, the growth and distribution of cracks in rock samples during freeze-thaw cycles are analyzed, and the crack growth process under coupled freeze-thaw-stress conditions is studied. The research findings indicate that as the number of freeze-thaw cycles increases, the development of cracks undergoes three stages: slow, fast, and then steady. The number of cracks increases radially from the inside to the outside of the sample. Approximately 80% of the frost heave cracks are distributed in the circular column area 10–25 mm away from the sample’s axis. When the number of freeze-thaw cycles is less than 80, the increase in the number of cracks follows an exponential function relationship. However, when the number of freeze-thaw cycles exceeds 80, the number of cracks increase logarithmically with their distance from the center of the circle. During the freeze-thaw cycle, the damage in the sample primarily occurs through tensile failure, and the freeze-thaw damage process of the rock is influenced by the initial pore structure.

Key words: freeze-thaw damage, discrete element method, volume expansion, heat conduction, cracks

中图分类号: 

  • TU 457
[1] 张宪尚, 文光才, 朱哲明, 隆清明, 刘杰, . 冲击荷载下充填节理岩体I型裂纹动态扩展特性研究[J]. 岩土力学, 2024, 45(2): 396-406.
[2] 王震, 朱珍德, 胡家豪, 周子玉, . 单向冻结粉质黏土已冻区分凝冰分布规律试验研究[J]. 岩土力学, 2024, 45(2): 407-416.
[3] 江文豪, 冯晨, 李江山, . 考虑温度变化下三层复合衬垫中重金属污染物一维运移理论模型[J]. 岩土力学, 2024, 45(2): 417-432.
[4] 桂跃, 谢正鹏, 高玉峰, . 有机质对黏性土热传导系数的影响与机制[J]. 岩土力学, 2023, 44(S1): 154-162.
[5] 王雪松, 郭连军, 刘鑫, 邓丁, 张久洋, 徐振洋, . 冲击作用下花岗岩的I型裂纹形态及断面粗糙度研究[J]. 岩土力学, 2023, 44(7): 1925-1936.
[6] 李满, 刘先珊, 潘玉华, 乔士豪, 郝梓宇, 钱磊, 罗晓雷, . 循环热冲击后裂隙砂岩力学特性试验研究[J]. 岩土力学, 2023, 44(5): 1260-1270.
[7] 邓鹏海, 刘泉声, 黄兴. 隧道底板渐进破裂碎胀大变形:一种新的底鼓机制研究[J]. 岩土力学, 2023, 44(5): 1512-1529.
[8] 梁东旭, 张农, 荣浩宇, . 交叉裂隙岩体裂纹扩展试验及混合有限−离散元数值模拟研究[J]. 岩土力学, 2023, 44(4): 1217-1229.
[9] 张东晓, 郭伟耀, 赵同彬, 谷雪斌, 陈玏昕, . 岩石I型裂纹定向扩展规律试验研究[J]. 岩土力学, 2022, 43(S2): 231-244.
[10] 王立, 倪彬, 谢伟, 王书昭, 寇坤, 赵奎, . 不同粒径黄砂岩微观−宏观裂纹演化机制研究[J]. 岩土力学, 2022, 43(S2): 373-381.
[11] 徐浩淳, 金爱兵, 赵怡晴, 陈哲, . 热处理砂岩不同接触角巴西劈裂数值模拟研究[J]. 岩土力学, 2022, 43(S2): 588-597.
[12] 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374.
[13] 杨恩光, 杨立云, 胡桓宁, 汪自扬, 张飞. 单轴压缩荷载下闭合裂纹扩展的试验和数值研究[J]. 岩土力学, 2022, 43(S1): 613-622.
[14] 杨科, 张寨男, 池小楼, 吕鑫, 魏祯, 刘文杰, . 循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J]. 岩土力学, 2022, 43(7): 1791-1802.
[15] 张黎明, 王在泉, 赵天阳, 丛宇, . 孔隙水压力作用下砂岩裂纹扩展行为的试验研究[J]. 岩土力学, 2022, 43(4): 901-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .