›› 2015, Vol. 36 ›› Issue (S1): 19-24.doi: 10.16285/j.rsm.2015.S1.004

• 基础理论与实验研究 • 上一篇    下一篇

湛江强结构性黏土强度特性的应力路径效应

孔令伟1,臧 濛1,郭爱国1,拓勇飞2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 中交第二公路勘察设计研究院有限公司 隧道与地下工程设计院,湖北 武汉430056
  • 收稿日期:2015-03-10 出版日期:2015-07-11 发布日期:2018-06-14
  • 作者简介:孔令伟,男,1967年生,博士,研究员,博士生导师,主要从事特殊土的力学特性与灾害防治技术研究。
  • 基金资助:
    国家自然科学基金(No.51179186)。

Effect of stress path on strength properties of Zhanjiang strong structured clay

KONG Ling-wei1, ZANG Meng1, GUO Ai-guo1, TUO Yong-fei2   

  1. 1.State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Rail and Underground Engineering Branch, CCCC Second Highway Consultants Co., Ltd., Wuhan, Hubei 430056, China
  • Received:2015-03-10 Online:2015-07-11 Published:2018-06-14

摘要: 为探讨湛江强结构性原状土与相应重塑土在不同应力路径下的强度特性及其与结构性的关联性,开展了在不同固结条件下的主动压缩、被动压缩、主动伸长3种应力路径试验,分析了该强结构性黏土在不同应力条件下的力学性状与强度特性。结果表明,湛江黏土的剪切破坏形态主要是单一型、双交叉剪切带与“腰鼓”型3类,应力-应变特性主要为轻度应变软化、强烈应变软化、轻度应变硬化、强烈应变硬化4类;偏压固结下试样破坏应变小于等压固结相应值,破坏强度及初始弹性模量比后者大;不同应力路径下土的强度差异主要反映在结构屈服前有效黏聚力的不同,结构屈服前,原状土的黏聚力高于重塑土的黏聚力,内摩擦角小于后者;结构屈服后,黏聚力逐渐减小,内摩擦角略有增大。原状土到重塑土的转变过程是黏聚力与内摩擦力在土体内部相互消长的过程,强结构性黏土在结构屈服前的强度指标具有较强应力路径依赖性。

关键词: 湛江黏土, 强结构性, 应力路径, 强度特性, 黏聚力, 结构屈服

Abstract: To explore the strength properties of undisturbed sample and remolded sample of Zhanjiang strong structured clay under different stress paths and its relevance to the soil structure, the stress path tests of such as conventional triaxial compression(CTC), reduced triaxial compression(RTC) and conventional triaxial extension(CTE) under different consolidation conditions are carried out, the mechanical behaviors as well as the strength properties of strong structured clay are analyzed. The results show that the shear failure modes of Zhanjiang clay mainly include unitary type, double crossover shear zone and waist drum type; and the stress-strain properties mainly include mild strain softening, intense strain softening, mild strain hardening and intense strain hardening. The failure strain of all the samples under anisotropic consolidation is less than that of isotropic consolidation while the breaking strength and initial elastic modulus are larger. The strength properties of clay under different stress paths are mainly reflected in the change of effective cohesion before the structure yielded; undisturbed sample has a higher cohesion and lower frictional angle compared with the remolded sample; but after structure yielded, the cohesion decreases and the frictional angle increases gradually. The transition from undisturbed sample to remolded sample is a growth and decline process of cohesion and friction inside the microstructure of clay. Based on the results, it is pointed out that the strength indexes of strong structured clay before the structure yielding has a quite strong dependence to the stress paths.

Key words: Zhanjiang clay, strong structure, stress paths, strength properties, cohesion, structure yield

中图分类号: 

  • TU 443
[1] 谢礼焕, 刘贺娟, 班胜男, 冒海军, 夏德斌, 宋宇家, 童荣琛, 应琪祺, . 不同组分断层泥的剪切特性试验研究[J]. 岩土力学, 2023, 44(9): 2545-2554.
[2] 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565.
[3] 张季如, 郑颜军, 彭伟珂, 王磊, 陈敬鑫. 填土应力路径下珊瑚砂幂律应力-应变模型的适用性研究[J]. 岩土力学, 2023, 44(5): 1309-1318.
[4] 舒荣军, 孔令伟, 周振华, 简涛, 李甜果, . 卸荷-增孔压条件下花岗岩残积土的力学特性[J]. 岩土力学, 2023, 44(2): 473-482.
[5] 钟丽, 陈鑫莲, 刘晓璇, 罗明星, 王兴肖. 不同应力路径下钙质砂的力学及变形特性 试验研究[J]. 岩土力学, 2023, 44(10): 2929-2941.
[6] 高敏, 何绍衡, 夏唐代, 丁智, 王新刚, 张琼方, . 复杂应力路径下钙质砂颗粒破碎及抗剪强度特性[J]. 岩土力学, 2022, 43(S1): 321-330.
[7] 王海波, 吕伟华, 武荘, 朱文波, . 不同温度应力路径下饱和黏土剪切特性[J]. 岩土力学, 2022, 43(3): 679-687.
[8] 年廷凯, 张放, 郑德凤, 李东阳, 沈月强, 雷得浴, . 基于计算流体力学-离散元法耦合方法的海底 黏性滑坡体运动行为模拟[J]. 岩土力学, 2022, 43(11): 3174-3184.
[9] 冷先伦, 王川, 庞荣, 盛谦, . 透明胶结土材料强度特性的试验研究[J]. 岩土力学, 2021, 42(8): 2059-2068.
[10] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[11] 刘炳恒, 孔令伟, 舒荣军, 李甜果, . 湛江结构性黏土在三维应力下的 力学特性与强度准则[J]. 岩土力学, 2021, 42(11): 3090-3100.
[12] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[13] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[14] 涂义亮, 刘新荣, 任青阳, 柴贺军, 王军保, 余佳玉. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928.
[15] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .