岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 519-526.doi: 10.16285/j.rsm.2018.1728

• 数值分析 • 上一篇    下一篇

根系和裂隙对土体水力和力学特性影响数值模拟

吴美苏1,周 成1, 2,王 林3,谭昌明4   

  1. 1. 四川大学 水电学院水力学与山区河流开发保护国家重点实验室,四川 成都 610065; 2. 南京水利科学研究院 水利部土石坝破坏机理与防控技术重点实验室,江苏 南京 210024; 3. 上海浦东新区投资咨询公司,上海 200125;4. 四川省交通运输厅公路规划勘察设计研究院,四川 成都 610041
  • 收稿日期:2018-09-16 出版日期:2019-08-01 发布日期:2019-08-20
  • 通讯作者: 周成,男,1970年生,博士,教授,主要从事环境岩土工程研究。E-mail: czhou@scu.edu.cn E-mail:449291174@qq.com
  • 作者简介:吴美苏,女,1994年生,硕士研究生,主要从事环境岩土工程研究。
  • 基金资助:
    国家自然科学基金(No.51579167);水利部土石坝破坏机理与防控技术重点实验室开放基金(No.YK915003)。

Numerical simulation of the influence of roots and fissures on hydraulic and mechanical characteristics of the soil

WU Mei-su1, ZHOU Cheng1, 2, WANG Lin3, TAN Chang-ming4   

  1. 1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; 2. Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China; 3. Shanghai Pudong New Area Investment Consulting Company, Shanghai 200125, China; 4. Sichuan Provincial Transport Department Highway Planning, Survey, Design and Research Institute, Chengdu, Sichuan 610041, China
  • Received:2018-09-16 Online:2019-08-01 Published:2019-08-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51579167) and the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources (YK915003).

摘要: 为探究根系和裂隙对土体水力及力学特性的影响,利用有限元软件计算降雨过程中裂隙和根土间隙对渗流场的影响,并以渗流计算结果为基础,分析降雨对根系固土作用的影响,采用分区强度折减法对降雨前后根?土复合体进行直剪试验模拟,同时考虑了侧根倾角的影响。结果表明,裂隙和根土间隙为雨水入渗提供优先通道,降雨影响深度随裂隙深度增加而增加;有根系时降雨影响深度由主根深度决定,侧根倾角对其影响较小,考虑根土间隙影响的降雨影响深度相较于无根系工况增加了93.3%;根系能显著提高土体的抗剪强度,相对于垂直主根方向的不同倾角,侧根增加土体抗剪强度由大至小依次为60o、45o、30o侧根和无根系;雨水入渗降低了土体强度,同时削弱了根系固土作用,使得降雨后根-土复合体抗剪强度大幅降低,是许多植被覆盖边坡仍发生浅层滑动原因之一。

关键词: 根?土复合体, 裂隙, 根土间隙, 优先流, 力学加筋, 数值计算

Abstract: To study the effect of fissures and soil-root interstices on hydraulic and mechanical characteristics of the soil, the FEM numerical tools are used to study the influence of fissure and soil-root interstices on the infiltration during the rainfall process. Then the influence of the rainfall on the reinforcement of roots is analyzed. The zonal strength reduction method is applied to simulate the direct shear tests of the root-soil composite before and after the rainfall, considering the impacts of lateral roots’ angles. The results show that the fissures and soil-root interstices become the preferential channels for rainfall infiltration. The depth of rainfall infiltration increases with the depth of fissures. And it is mainly controlled by the vertical depth of the major root, while the influence of the inclination angle of lateral roots is small. The rainfall infiltration depth with root interstices is increased by 93.3% compared with the case without the root in the soil. The root system can significantly improve the shear strength of the soil. The shear strength of the soil with 60° lateral roots is the greatest, followed by the condition with 45°, 30° and without roots. Rainfall infiltration not only reduces the strength of the soil, but also weakens the reinforcement effect of roots. Therefore, the shear strength of soil-root composite system is greatly reduced after the rainfall, resulting in the sliding of the vegetation-covered slopes in a shallow depth.

Key words: root-soil composite, fissure, soil-root interstices, preferential flow, mechanical reinforcement, numerical simulation

中图分类号: 

  • TU 443
[1] 王珂, 盛金昌, 郜会彩, 田晓丹, 詹美礼, 罗玉龙, . 应力−渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(S1): 30-40.
[2] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[3] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[4] 高雪峰, 张延军, 黄奕斌, 赵熠, 倪金, 马静晨. 花岗岩粗糙单裂隙对流换热特性的数值模拟[J]. 岩土力学, 2020, 41(5): 1761-1769.
[5] 夏才初, 王岳嵩, 郑金龙, 吕志涛. 裂隙岩体不均匀冻胀性研究[J]. 岩土力学, 2020, 41(4): 1161-1168.
[6] 侯晓萍, 陈胜宏. 采用复合单元法模拟裂隙多孔介质变饱和流动[J]. 岩土力学, 2020, 41(4): 1437-1446.
[7] 田威, 王震, 张丽, 余宸, . 高温作用后3D打印岩体试样力学性能初探[J]. 岩土力学, 2020, 41(3): 961-969.
[8] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[9] 赵国彦, 李振阳, 吴浩, 王恩杰, 刘雷磊. 含非贯通裂隙砂岩的动力破坏特性研究[J]. 岩土力学, 2019, 40(S1): 73-81.
[10] 肖瑶, 邓华锋, 李建林, 支永艳, 熊雨. 长期浸泡作用下灌浆加固裂隙岩体劣化效应[J]. 岩土力学, 2019, 40(S1): 143-151.
[11] 翟明磊, 郭保华, 王辰霖, 焦峰, . 法向卸荷下贯通裂隙岩样压剪破坏特征研究[J]. 岩土力学, 2019, 40(S1): 217-223.
[12] 支永艳, 邓华锋, 肖瑶, 段玲玲, 蔡佳, 李建林. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(S1): 237-244.
[13] 陈卫忠, 雷江, 于洪丹, 李翻翻, 马永尚, 闫宪洋, . 黏土岩饱和过程中水分运移规律试验研究[J]. 岩土力学, 2019, 40(9): 3327-3334.
[14] 李博, 黄嘉伦, 钟振, 邹良超, . 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3768.
[15] 王鹏飞, 谭文辉, 马学文, 李子建, 刘景军, 武洋帆, . 不同粗糙度和隙宽贯通充填裂隙 渗流特性试验研究[J]. 岩土力学, 2019, 40(8): 3062-3070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!