岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 172-180.doi: 10.16285/j.rsm.2019.0264

• 基础理论与实验研究 • 上一篇    下一篇

堆积层滑坡地震动力响应的物理模型试验

于一帆1, 2,王 平1, 2, 3,王会娟1, 2,许书雅1, 2,郭海涛1, 2   

  1. 1. 中国地震局兰州地震研究所,甘肃 兰州 730000;2. 中国地震局 黄土地震工程重点实验室,甘肃 兰州 730000; 3. 西安理工大学 岩土工程研究所,陕西 西安 710048
  • 收稿日期:2019-01-27 出版日期:2019-08-01 发布日期:2019-08-16
  • 通讯作者: 王平,男,1977年生,硕士,副研究员,硕士生导师,主要从事土力学、地震工程等方面研究。E-mail: lanzhouwang_p@126.com E-mail:yuyi_yi@sina.com
  • 作者简介:于一帆,男,1995年生,硕士研究生,主要从事岩土地震工程等方面的研究。
  • 基金资助:
    中国地震局地震预测研究所基本科研业务费专项(No.KY1805027,No.2018IESLZ07);甘肃省重点研发项目(No.18YF1FA101)。

Physical model test of seismic dynamic response to accumulative landslide

YU Yi-fan1, 2, WANG Ping1, 2, 3, WANG Hui-juan1, 2, XU Shu-ya1, 2, GUO Hai-tao1, 2   

  1. 1. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, Gansu 730000, China; 2. Key Laboratory of Loess Earthquake Engineering, CEA, Lanzhou, Gansu 730000, China; 3. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
  • Received:2019-01-27 Online:2019-08-01 Published:2019-08-16
  • Supported by:
    This work was supported by the Institute of Earthquake Forecasting, CEA, Special Funds for Basic Scientific Research Operations(KY1805027, 2018IESLZ07) and Key R&D Projects in Gansu Province(18YF1FA101).

摘要: 以玉树7.1级地震诱发的玉树机场路堆积层滑坡为对象,该滑坡坡度约为10o,长×宽×厚为317 m×482 m×19.8 m,由以碎石土为主的上覆层、卵石土为主的滑动带及基岩3层组成,开展大型振动台模型试验,探究震后边坡再次承受振动荷载的能力以及地震垂直分量对坡体稳定性的贡献,分析其动力响应特征和失稳破坏机制。结果表明,强震作用下堆积层滑坡的永久变形是造成地震地质灾害的重要因素;随着输入地震荷载增大,坡脚率先破碎沉降,坡体中部产生弧形裂隙并产生沉降,坡顶出现贯穿张裂隙和剪切裂隙并向坡腰推进,表现出典型的牵引性滑坡特征;峰值加速度(PGA)、动土压力以及加速度频谱与输入地震波的强度、滑坡高程呈正相关;PGA放大系数呈现出明显的非线性特征,其变化趋势随地震荷载强度增大而减小,地震波垂直分量对滑坡PGA放大系数影响略大于水平分量。

关键词: 堆积层滑坡, 振动台模型试验, 动力响应, 傅里叶谱分析

Abstract: The accumulative landslide of Yushu Airport Road, induced by the Yushu M7.1 earthquake, has a slope of about 10 degrees and the size is 317 m × 482 m × 19.8 m in length, width and thickness direction. It is composed of three layers, i.e. an overlying layer consisted of gravel soil, a sliding zone consisted of pebble soil and a bedrock layer. In this paper, the large-scale shaking table model test is carried out to study the slope’s capacity to withstand the vibration load after the earthquake and the contribution of the vertical component of the earthquake to the stability of the slope, and its dynamic response characteristics and failure mechanism are also analyzed. The results show that the permanent deformation of accumulative formation’s landslide under strong earthquake is an important factor causing seismic geological hazards. With the increase of seismic intensity, the foot of slope firstly breaks down and settles. The arched fissures develop in the middle of the slope and the subsidence occurs. Furthermore, a series of tensile cracks and shear fractures occur at the top of the landslide and they advance towards the waist of the slope, showing typical tractive landslides. Peak ground acceleration(PGA), dynamic soil pressure and acceleration spectrum are positively correlated with the intensity of the input seismic wave and the landslide elevation. The PGA amplification coefficient exhibits distinct nonlinear characteristics, and its variation trend decreases with the increase of seismic load intensity. The vertical component of seismic wave has a slightly greater influence on the PGA amplification coefficient of landslide than the horizontal component.

Key words: landslide, shaking table model test, dynamic response, Fourier spectrum analysis

中图分类号: 

  • TU 473
[1] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[2] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[3] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[4] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[5] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[6] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[7] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[8] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[9] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[10] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[11] 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644.
[12] 姜立春, 罗恩民, 沈彬彬, . 多自由度模型法的立体采空区群爆破 动力响应研究[J]. 岩土力学, 2019, 40(6): 2407-2415.
[13] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[14] 史 吏, 王慧萍, 孙宏磊, 潘晓东, . 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750-1760.
[15] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!