岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2461-2469.doi: 10.16285/j.rsm.2019.1374

• 岩土工程研究 • 上一篇    下一篇

地震作用下岩羊村滑坡稳定性与失稳机制研究

杜文杰1, 2,盛谦1, 2,付晓东1,汤华1,陈贺1, 2,杜宇翔1, 2,周永强1   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2019-08-07 修回日期:2019-12-16 出版日期:2020-07-10 发布日期:2020-09-20
  • 通讯作者: 盛谦,男,1962年生,博士,研究员,主要从事工程岩体力学性质与稳定性评价、地质灾害防治等方面的研究工作。E-mail: qsheng@whrsm.ac.cn E-mail: dwj_7490@163.com
  • 作者简介:杜文杰,男,1995年生,硕士研究生,主要从事地质灾害防治的研究工作。
  • 基金资助:
    国家重点研发计划资助(No. 2018YFC0809400);国家自然科学基金(No. 51779250);中国科学院国际合作局国际伙伴计划项目 (No. 131551KYSB20180042);云南省交通科技项目《云交科教[2017]33号》

Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake

DU Wen-jie1, 2, SHENG Qian1, 2, FU Xiao-dong1, TANG Hua1, CHEN He1, 2, DU Yu-xiang1, 2, ZHOU Yong-qiang1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-08-07 Revised:2019-12-16 Online:2020-07-10 Published:2020-09-20
  • Supported by:
    This work was supported by the National Key R&D Program of China (2018YFC0809400), the National Natural Science Foundation of China (51779250), the International Partnership Program of Chinese Academy of Sciences (131551KYSB20180042) and the Traffic Science, Technology and Education Project of Yunnan Province ([2017] 33).

摘要: 以云南香丽高速公路沿线的岩羊村滑坡为研究对象,开展了滑坡动力稳定性评价及失稳机制研究:进行了不同烈度地震下的滑坡稳定性分析,采用滑带弹性区体积占比的变化反映其失稳过程,结合滑坡变形破坏模式,对滑坡整体稳定性进行评价;针对极限地震工况,分别从时间和空间角度描述滑坡失稳过程;建立了同时考虑滑带弱化和硬化的滑坡尖点突变模型,揭示了滑坡失稳的触发机制。研究表明:滑坡在区域Ⅷ度地震烈度条件下基本保持稳定,在锁固段的“锁固作用”下滑坡仅发生局部破坏;滑坡发生整体失稳的临界峰值加速度为2.29 m/s2,其失稳机制为在前缘牵引、后缘拉裂作用下,滑带塑性区贯通导致的整体失稳;地震作用下滑带前缘、中部、后缘并非同步破坏,表现为累积?触发效应;利用改进尖点突变模型推导了刚度效应失稳判据,揭示了滑坡整体稳定性与滑带介质的刚度及尺寸特性密切相关。研究结果为岩羊村滑坡的防治与抗震设计提供了指导,并可为同类工程的动力稳定性评价与失稳机制分析所借鉴。

关键词: 滑坡, 地震, 动力稳定性, 锁固作用, 尖点突变理论, 启动机制

Abstract: Dynamic stability evaluation and failure mechanism research were performed on the Yanyang village landslide along Xiangli expressway in Yunnan province. The landslide stability analysis under different seismic intensities was carried out, the progressive failure of landslide was described by the change in volume ratio of residual elastic zone of slip zone. The dynamic stability of landslide was evaluated by combining with the deformation mode of landslide and the volume ratio of residual elastic zone. For the failure mechanism of landslide under extreme earthquake conditions, the failure process of landslide was described in terms of time and space respectively. A cusp catastrophe model of landslide, which could consider both weakening and hardening section of slip zone, was established and the trigger mechanism was revealed. The results showed that: (1) the landslide under the condition of Ⅷ degree seismic intensity remained stable, and only local failure occurred due to the "locking effect " of locking section; (2) The critical peak acceleration of overall failure of the landslide was 2.29 m/s2, and its failure mechanism was the whole failure caused by the sudden penetration of the plastic zone due to the failure of "locking action" under the coupling action of leading section traction and trailing section tension crack; (3) The leading, middle and trailing section of the slide zone were not destroyed synchronously, but presented a cumulative-triggering process. (4) A failure criterion of stiffness effect was derived based on the improved cusp catastrophe model, the overall stability of the landslide was found to be closely related to the stiffness and size characteristics of the sliding zone medium. The results could offer guidance for disaster prevention and seismic design of Yanyang village landslide, and be used for reference in the dynamic stability evaluation and failure mechanism analysis of similar projects.

Key words: landslide, earthquake, dynamic stability, locking effect, cusp catastrophe model, trigger mechanism

中图分类号: 

  • P 642.22
[1] 谢济仁, 乔世范, 余鹏鲲, 内村太郎, 王功辉, 江耀, 方正, 田京立. 土质滑坡坡表倾斜变形的室内外试验研究[J]. 岩土力学, 2021, 42(3): 681-690.
[2] 李志浩, 肖世国. 不同运动模式的悬臂式挡墙地震永久位移算法[J]. 岩土力学, 2021, 42(3): 723-734.
[3] 任三绍, 张永双, 徐能雄, 吴瑞安, 刘筱怡. 含砾滑带土复活启动强度研究[J]. 岩土力学, 2021, 42(3): 863-873.
[4] 杨军, 孙晓立, 卞德存, 邵继喜, . 基于平行地震波法探测桩基缺陷的试验研究[J]. 岩土力学, 2021, 42(3): 874-881.
[5] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[6] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[7] 张凯, 张科, 保瑞, 刘享华, 齐飞飞, . 基于优化经验模态分解和聚类分析的滑坡 位移智能预测研究[J]. 岩土力学, 2021, 42(1): 211-223.
[8] 牛笑笛, 杨广庆, 王贺, 丁硕, 冯帆, . 不同面板形式加筋土挡墙结构 特性现场试验研究[J]. 岩土力学, 2021, 42(1): 245-254.
[9] 徐晓冬, 孙光华, 姚旭龙, 梁学健, 邵陆航, . 基于能量耗散与释放的充填体失稳 尖点突变预警模型[J]. 岩土力学, 2020, 41(9): 3003-3012.
[10] 李英俊, 夏元友, 王智德. 地震作用下土钉支护边坡震后位移分析[J]. 岩土力学, 2020, 41(9): 3013-3021.
[11] 闫琦玮, 李新坡, 何思明, 罗渝, 田宏岭, 吴永, . 典型红层滑坡滑带土自愈合效应试验研究[J]. 岩土力学, 2020, 41(9): 3041-3048.
[12] 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065.
[13] 黄睿, 汤金焕, . RT模式下地震非极限主动土压力的拟动力分析[J]. 岩土力学, 2020, 41(8): 2564-2572.
[14] 何少其, 刘元雪, 杨骏堂, 柏准, 赵久彬, . 库岸堆积层滑坡位移的分量响应模式 及多因子模型[J]. 岩土力学, 2020, 41(8): 2773-2784.
[15] 李见飞, 苏杨, 孙志彬, 赵晨, . 基于Newmark滑块原理的抗滑桩加固 三维土坡的地震位移分析方法[J]. 岩土力学, 2020, 41(8): 2785-2795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 李少龙,张家发,张 伟,肖 利. 表层土渗透系数空间变异与随机模拟研究[J]. , 2009, 30(10): 3168 -3172 .
[3] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[4] 谢凌志,周宏伟,谢和平. 盐岩CO2处置相关研究进展[J]. , 2009, 30(11): 3324 -3330 .
[5] 王 丽,郑 刚. 局部倾斜桩竖向承载力的有限元研究[J]. , 2009, 30(11): 3533 -3538 .
[6] 王 飞,王 媛,倪小东. 渗流场随机性的随机有限元分析[J]. , 2009, 30(11): 3539 -3542 .
[7] 常晓林,张美丽,杨海云,李珍照. 基于联系熵的围岩稳定性评价研究[J]. , 2010, 31(1): 99 -101 .
[8] 郭 莹,王 琦. 落锥法确定粉土液限和塑限的试验研究[J]. , 2009, 30(9): 2569 -2574 .
[9] 郦建俊,黄茂松,王卫东,陈 峥. 软土地基中扩底抗拔中长桩的极限承载力分析[J]. , 2009, 30(9): 2643 -2650 .
[10] 任 松,姜德义,杨春和,藤宏伟. 共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J]. , 2010, 31(2): 416 -421 .