岩土力学 ›› 2021, Vol. 42 ›› Issue (1): 245-254.doi: 10.16285/j.rsm.2020.0578

• 岩土工程研究 • 上一篇    下一篇

不同面板形式加筋土挡墙结构 特性现场试验研究

牛笑笛1, 2,杨广庆2, 3,王贺3,丁硕3,冯帆3   

  1. 1. 石家庄铁道大学 交通运输学院,河北省 石家庄 050043;2. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室, 河北省 石家庄 050043;3. 石家庄铁道大学 土木工程学院,河北省 石家庄 050043
  • 收稿日期:2020-05-08 修回日期:2020-10-09 出版日期:2021-01-11 发布日期:2021-01-07
  • 通讯作者: 杨广庆,男,1971年生,博士,教授,博士生导师,主要从事土工合成材料加筋、路基工程等方面的研究与教学工作。E-mail: gtsyang@vip.163.com E-mail:tdniuxd@163.com
  • 作者简介:牛笑笛,男,1991年生,博士研究生,主要从事土工合成材料加筋、岩土工程等方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 51378322,No. 51709175);河北省自然科学基金资助项目(No. E2019208159)

Field tests on structural properties of reinforced retaining walls with different panels

NIU Xiao-di1, 2, YANG Guang-qing2, 3, WANG He3, DING Shuo3, FENG Fan3   

  1. 1. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
  • Received:2020-05-08 Revised:2020-10-09 Online:2021-01-11 Published:2021-01-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51378322, 51709175) and the Natural Science Foundation of Hebei Province (E2019208159).

摘要: 以成昆铁路复线加筋土挡墙为工程依托进行现场原位试验,对比分析工后9个月内新型整体式面板、内嵌返包结构的模块式面板和模块式面板3类加筋土挡墙的结构特性。在此期间发生两次地震,监测了震后挡墙变形及土压力变化。结果表明:整体式面板加筋土挡墙整体稳定性最好,具有良好的抗震性能,格栅应变变化率、墙体压缩量和墙面水平位移均最小。整体式面板和模块式面板加筋土挡墙墙背土压力沿墙高近似呈M型,内嵌返包结构的模块式面板加筋土挡墙墙背土压力沿墙高近似呈倒S型。整体式面板加筋土挡墙的侧向土压力系数沿墙高变化较小,小于美国联邦公路局(FHWA)加筋设计指南计算值;内嵌返包结构的模块式面板加筋土挡墙侧向土压力系数沿墙高呈增大的趋势,挡墙中、下部小于FHWA计算值,上部接近或大于静止土压力系数;模块式面板加筋土挡墙侧向土压力系数大部分处在FHWA计算值与静止土压力系数之间。3类挡墙土工格栅应变沿墙高均呈非线性变化。挡墙墙体压缩量随着时间的增加逐渐增加,在工后前50 d时间内增加速率较快,随后增加速率减缓,进入雨季之后增加速率再次增大。发生地震后,3类加筋土挡墙均出现不同程度的墙背土压力减小、格栅应变增大、墙体压缩量增加和墙面板外移的现象。

关键词: 加筋土挡墙, 不同面板形式, 结构特性, 地震

Abstract: Based on the reinforced retaining wall of Chengdu-Kunming railway, the field tests were carried out. The comparison of the reinforced retaining wall with full-height rigid panels, the reinforced retaining wall with modular panel embedded return package structure and the reinforced retaining wall with modular panel within 9 months after the completion of construction were analyzed to study the structural properties. During the test period, two earthquakes occurred and changes of the deformation of retaining wall and the earth pressure were monitored. The results show that the geogrid strain rate, wall compression and wall horizontal displacement can be well controlled by the reinforced retaining wall with full-height rigid panel, showing the best stability and seismic performance. The earth pressure on the back of the reinforced retaining wall with full-height rigid panel and reinforced retaining wall with modular panel are distributed following with a "M" type along the wall height. The distribution of earth pressure on the back of the reinforced retaining wall with modular panel embedded return package structure is similar to "S" along the wall height. The lateral earth pressure coefficients of the reinforced retaining wall with full-height rigid panel change little along the wall height, which are less than the FHWA calculated values. The lateral earth pressure coefficients of the reinforced retaining wall with modular panel embedded return package structure have an increased trend along the wall height. The values of the middle and lower part of the retaining wall are less than the FHWA calculated values, and the values of the upper part are close to or higher than the static earth pressure coefficients. Most of the lateral earth pressure coefficients of the reinforced retaining wall with modular panel are ranging from the FHWA calculation values to the static earth pressure coefficients. The geogrid strains of three retaining walls change nonlinearly along the wall height. The retaining wall compressions increase gradually with the increased time, especially in the first 50 days. Then the increase rates gradually decrease until the coming of the rainy season, the hydraulic effect promotes the increase rates to increase again. After the earthquakes, the earth pressure on the back decreases, the geogrid strain increases, the wall compressions increase and the wall panels have an obvious trend to move out.

Key words: reinforced retaining wall, different panels, structural property, earthquake

中图分类号: 

  • TU 470
[1] 刘中宪, 刘英, 孟思博, 黄磊, . 基于间接边界元法的近断层沉积谷地地震动模拟[J]. 岩土力学, 2021, 42(4): 1141-1155.
[2] 李志浩, 肖世国. 不同运动模式的悬臂式挡墙地震永久位移算法[J]. 岩土力学, 2021, 42(3): 723-734.
[3] 杨军, 孙晓立, 卞德存, 邵继喜, . 基于平行地震波法探测桩基缺陷的试验研究[J]. 岩土力学, 2021, 42(3): 874-881.
[4] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[5] 李英俊, 夏元友, 王智德. 地震作用下土钉支护边坡震后位移分析[J]. 岩土力学, 2020, 41(9): 3013-3021.
[6] 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065.
[7] 黄睿, 汤金焕, . RT模式下地震非极限主动土压力的拟动力分析[J]. 岩土力学, 2020, 41(8): 2564-2572.
[8] 李见飞, 苏杨, 孙志彬, 赵晨, . 基于Newmark滑块原理的抗滑桩加固 三维土坡的地震位移分析方法[J]. 岩土力学, 2020, 41(8): 2785-2795.
[9] 杜文杰, 盛谦, 付晓东, 汤华, 陈贺, 杜宇翔, 周永强, . 地震作用下岩羊村滑坡稳定性与失稳机制研究[J]. 岩土力学, 2020, 41(7): 2461-2469.
[10] 肖世国, 刘航, 于昕左. 水平柔性拉筋式重力墙−坡体地震整体 稳定性分析方法[J]. 岩土力学, 2020, 41(6): 1836-1844.
[11] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[12] 潘旦光, 程业, 陈清军. 地下商场结构对地面运动影响的振动台试验研究[J]. 岩土力学, 2020, 41(4): 1134-1145.
[13] 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278.
[14] 张雪东, 蔡红, 魏迎奇, 张紫涛, 梁建辉, 胡晶. 基于动力离心试验的软基尾矿库地震响应研究[J]. 岩土力学, 2020, 41(4): 1287-1294.
[15] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[5] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[6] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[7] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .
[8] 周火垚,施建勇. 饱和软黏土中足尺静压桩挤土效应试验研究[J]. , 2009, 30(11): 3291 -3296 .
[9] 程 涛,晏克勤,王靖涛. 不同固结条件下黏土数值化建模的研究[J]. , 2009, 30(11): 3352 -3356 .
[10] 朱训国,杨 庆. 全长注浆岩石锚杆中性点影响因素分析研究[J]. , 2009, 30(11): 3386 -3392 .