岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 490-500.doi: 10.16285/j.rsm.2021.0147

• 岩土工程研究 • 上一篇    下一篇

岩体性能变化条件下台阶爆破根底的 产生机制研究

魏东1, 2, 3,陈明1, 2,卢文波1, 2,李康贵1, 2,王高辉1, 2   

  1. 1. 武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072;2. 武汉大学 水工岩石力学教育部重点实验室,湖北 武汉 430072; 3. 湖北交投建设集团有限公司,湖北 武汉 430070
  • 收稿日期:2021-01-26 修回日期:2022-05-05 出版日期:2022-06-30 发布日期:2022-07-15
  • 通讯作者: 陈明,男,1977年生,博士研究生,教授、博士生导师,从事水利水电工程施工、岩石动力学方面的教学与研究工作。E-mail: 108579303@qq.com E-mail:whuchm@whu.edu.cn
  • 作者简介:魏东,男,1994年生,博士研究生,主要从事水利水电工程施工技术及岩石动力学方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.51779193,No.51979205)。

Formation mechanism of blasting tight bottom caused by lithologic change

WEI Dong1,2,3, CHEN Ming1, 2, LU Wen-bo1, 2, LI Kang-gui1, 2, WANG Gao-hui1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China; 3. Hubei Communications Investment Construction Group Co., Ltd. Wuhan, Hubei 430070, China
  • Received:2021-01-26 Revised:2022-05-05 Online:2022-06-30 Published:2022-07-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51779193, 51979205).

摘要: 爆破根底会严重影响深孔台阶爆破效果及后续施工工序。结合台阶爆破岩体破坏特征及结构动力学理论,将多自由度体系结构动力法应用于台阶爆破的结构受力分析中,研究了岩体力学性能变化对台阶底部岩体破坏、根底形成的影响机制。结果表明:当台阶中部岩体力学性能降低50%时,岩性软弱段会弱化上部荷载对底部岩体的破坏作用,使底部岩体剪力最大削弱7.8%、弯矩减小6.6%,受力减弱使得根底形成机率增加,并且这种弱化作用随着岩体力学性能的降低而显著增大;而当台阶底部岩体力学性能增强时,可小幅度增大底部岩体的内力,但因材料强度大幅提高,岩体破坏难度增大,从而较易形成爆破根底。进一步利用岩体结构破坏准则分析了不同因素对台阶根底形成的影响机制,发现岩性分布不均及其引起的结构刚度、底部受力条件变化是导致根底形成的主要原因,通过调整起爆点高度可以减小中部岩性软弱段对底部岩体的受力影响,采取增加底部岩体受力条件及减小底部岩体结构刚度的工程措施也能增加底部岩体破坏程度,避免爆破根底的形成,相关研究成果可供类似工程参考。

关键词: 台阶爆破, 岩体, 根底, 结构动力学, 控制方法

Abstract: The emergence of blasting tight bottom seriously affects the effect of bench blasting and subsequent construction procedure. The dynamic analysis method of multi-degree of freedom system is applied to the structural stress analysis of bench blasting, and the influence mechanism of lithologic change on the formation of blasting tight bottom is analyzed based on the structural characteristics of the rock mass. The results indicate that 50% weakening of the lithology of the middle rocks could increase damage difficulty of bottom rock, because the shear force of rock mass at the bottom is reduced by 7.8% and the bending moment is reduced by 6.6%. And the weakening effect increases with the decrease of mechanical properties of rock mass. In addition, the strengthening of the lithology of the bottom rocks could increase the internal force of bottom rock slightly, but rock strength is greatly improved, which makes the bottom rock more difficult to break. Furthermore, the influence mechanism of different factors on the formation of blasting tight bottom is analyzed based on the rock mass structure failure criterion. It is found that the uneven distribution of lithology and the changes of structural stiffness and bottom stress conditions are the main reasons for the formation of bench foundation. Adjusting the initiation point below the bench can weaken the influence of weak-lithology segment. Increasing the stress conditions and reducing the structural stiffness of the bottom rock mass can also avoid the formation of blasting tight bottom. The relevant research results can provide reference for similar projects.

Key words: bench blasting, rock mass, toe rocks, structural mechanics, control method

中图分类号: 

  • TD235
[1] 柴少波, 周涛, 田威, 井彦林, 史杰辉. 考虑岩体应力的结构面中应力波传播特性分析[J]. 岩土力学, 2022, 43(S1): 184-192.
[2] 张化进, 吴顺川, 韩龙强, 任子健, . 基于改进Dempster-Shafer证据理论的岩体质量异质集成评价方法[J]. 岩土力学, 2022, 43(S1): 532-541.
[3] 张化进, 吴顺川, 韩龙强, . 基于DBSCAN选择性聚类集成的岩体结构面 优势产状分组方法[J]. 岩土力学, 2022, 43(6): 1585-1595.
[4] 蒋中明, 肖喆臻, 唐栋, 何国富, 许卫, . 基于裂隙渗流效应的水封油库涌水量预测分析[J]. 岩土力学, 2022, 43(4): 1041-1047.
[5] 阙相成, 朱珍德, 牛子豪, 黄浩楠, . 不同截面柱状节理岩体变形及强度各向异性研究[J]. 岩土力学, 2021, 42(9): 2416-2426.
[6] 张建聪, 江权, 郝宪杰, 丰光亮, 李邵军, 汪志林, 樊启祥, . 高应力下柱状节理玄武岩应力−结 构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568.
[7] 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150.
[8] 冯忠居, 江冠, 赵瑞欣, 龙厚胜, 王政斌, 张正旭, . 基于多因素耦合效应的锚索预应力长期损失研究[J]. 岩土力学, 2021, 42(8): 2215-2224.
[9] 于崇, 岳好真, 李海波, 周传波, 陈士海, 邵珠山, . 基于岩体质量的爆破控制参数及可靠度分析[J]. 岩土力学, 2021, 42(8): 2239-2249.
[10] 崔溦, 王利新, 江志安, 王超, 王枭华, 张社荣, . 基于修正立方定律的岩体粗糙裂隙网络 注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 2250-2258.
[11] 刘胤池, 李庶林, 唐超. 岩体破裂震源机制解类型判据的改进及应用研究[J]. 岩土力学, 2021, 42(5): 1335-1344.
[12] 刘向阳, 程桦, 黎明镜, 王雪松, 张亮亮, 周瑞鹤, . 基于浆液流变性的深埋岩层纵向劈裂注浆理论研究[J]. 岩土力学, 2021, 42(5): 1373-1380.
[13] 殷明伦, 张晋勋, 江玉生, 江华, 商晓旭, . 岩体体积节理数表征岩体完整系数的结构面 类别修正研究[J]. 岩土力学, 2021, 42(4): 1133-1140.
[14] 蒙伟, 何川, 陈子全, 郭德平, 周子寒, 寇昊, 吴枋胤, . 岭回归在岩体初始地应力场反演中的应用[J]. 岩土力学, 2021, 42(4): 1156-1169.
[15] 彭述权, 王培宇, 樊玲, 周子龙, 张珂嘉. 节理岩体弹塑黏性疲劳本构模型研究[J]. 岩土力学, 2021, 42(2): 379-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .