岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 501-512.doi: 10.16285/j.rsm.2020.1647

• 岩土工程研究 • 上一篇    下一篇

基于多案例统计的基坑开挖引起侧方既有隧道 变形预测公式及其工程应用

刘波1,章定文2,李建春1   

  1. 1. 东南大学 土木工程学院,江苏 南京 211189;2. 东南大学 交通学院,江苏 南京 211189
  • 收稿日期:2020-11-04 修回日期:2021-03-24 出版日期:2022-06-30 发布日期:2022-07-15
  • 通讯作者: 章定文,男,1978年生,博士,教授,博士生导师,主要从事地基处理方面的研究。E-mail: zhangdw@seu.edu.cn E-mail: boliu@seu.edu.cn
  • 作者简介:刘波,男,1989年生,博士,助理研究员,主要从事基坑与隧道工程方面的研究。
  • 基金资助:
    中国博士后科学基金(No.2021M690624);江苏省博士后科研资助计划(No.2021K146B);东南大学优秀博士学位论文基金(No.YBJJ1791)

Prediction formula and its application of existing tunnel deformation induced by laterally adjacent deep excavation based on case statistics

LIU Bo1, ZHANG Ding-wen2, LI Jian-chun1   

  1. 1. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 2. School of Transportation, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2020-11-04 Revised:2021-03-24 Online:2022-06-30 Published:2022-07-15
  • Supported by:
    This work was supported by the China Postdoctoral Science Foundation(2021M690624), the Jiangsu Planned Projects for Postdoctoral Research Funds (2021K146B) and the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1791).

摘要: 收集42个基坑开挖对侧方既有隧道影响的工程案例,统计每个案例中典型地层条件、基坑和隧道规模尺寸、相对位置、结构变形及控制措施等;分析重要因素对隧道竖向和水平位移的影响,明确了隧道发生隆、沉的判别条件,给出了坑外隧道竖向位移分区;提出了隧道水平位移综合预测指标,给出了3种地层条件下隧道水平位移经验预测公式。依托某实际工程,利用得到的预测公式对侧方隧道变形进行施工前预测,并把预测结果与现场实测结果进行对比,验证了预测公式的合理性。结果表明:侧方隧道受基坑开挖影响,水平位移均指向坑内,而竖向位移为沉降或隆起,具体与隧道拱顶埋深Ht和隧道距基坑水平距离Lt有关,统计得知隧道发生隆、沉的临界拱顶埋深为He + RHe为基坑开挖深度,R为隧道直径,拱腰距基坑临界水平距离为Lt = He,进而结合侧方隧道竖向位移分布特征,可将坑外范围划分为沉降区、过渡区和隆起区。基坑围护结构水平位移δhm、基坑开挖深度He、隧道与基坑水平间距Lt以及基坑沿隧道纵向宽度b均是影响隧道水平位移zhm的重要因素,ζhmδhmHe的增大而呈非线性增长的趋势,ζhm/δhmLt的增加呈幂函数递减,ζhmb的增加有增长的趋势,科学预测隧道水平位移需综合考虑这些因素的影响。采用bHe/Lt作为隧道水平位移预测指标,发现3种地层条件下ζhmbHe/Lt存在良好的线性关系。工程实例证实,根据其建立的隧道水平变形预测公式可以取得良好的预测效果。

关键词: 案例统计, 基坑, 既有隧道, 预测公式

Abstract:

Forty-two case histories in which the laterally adjacent deep excavation affects the existing tunnel are collected. The typical stratum condition, size, relative position, structure deformation and control measures of deep excavation and tunnel in each case history are counted. By analyzing the influences of important factors on vertical and horizontal displacements of tunnel, the judging criterions of tunnel heave and settlement are clarified, and then the zoning of tunnel vertical displacement outside the deep excavation is given. The comprehensive prediction index of tunnel horizontal displacement is proposed, and the practical empirical prediction formulae of tunnel horizontal displacement under three categories of stratum conditions are given. Finally, relying on a specific case study, the deformation of tunnel is predicted using the obtained empirical formula before construction, and the rationality of the prediction formula is verified by comparing the prediction results with the field monitoring results. The results show that the horizontal displacement of tunnel is towards the pit, while the vertical displacement is in the form of heave or settlement, which is related to the buried depth of tunnel crown (Ht) and the distance between tunnel springline and deep excavation (Lt). It is obtained from statistics that the critical value of Ht is He+R and the critical value of Lt is He, and then considering the vertical displacement distribution characteristics of tunnel, the area outside the pit can be divided into settlement zone, transition area and heave zone. Horizontal displacement of retaining structure (ζhm), excavation depth (He), horizontal distance Lt between tunnel and deep excavation and longitudinal width b of deep excavation along tunnel are all important factors affecting horizontal displacement ζhm of tunnel. ζhm increases nonlinearly with the increases of dhm and He; zhm/δhm decreases with the increase of Lt as a power function relationship; ζhm has an increasing trend with the increase of b, which means multiple factors should be considered to scientifically predict the horizontal displacement of tunnel. ζhm and bHe/Lt have a good linear relationship under three stratum conditions using bHe/Lt as the prediction index of tunnel horizontal displacement, and the tunnel horizontal displacement prediction formula based on it can achieve good prediction effect proved by an actual engineering case.

Key words: case statistics, deep excavation, existing tunnel, prediction formula

中图分类号: 

  • TU470
[1] 吴佳明, 陈健, 陈国良, 钟宇, . 基于BIM技术的地铁基坑工程施工仿真模拟方法[J]. 岩土力学, 2022, 43(S1): 553-566.
[2] 周勇, 赵元基, 王正振, . 基于土体强度冗余法的桩锚支护结构 动态稳定性分析[J]. 岩土力学, 2022, 43(S1): 641-649.
[3] 王祖贤, 施成华, 龚琛杰, 曹成勇, 刘建文, 彭铸, . 邻近车站(工作井)基坑开挖对下卧 盾构隧道影响的解析计算方法[J]. 岩土力学, 2022, 43(8): 2176-2190.
[4] 谭廷震, 黄茂松, 刘奕晖, 王浩然, 张中杰, . 基于块体剪流组合机构的黏土基坑抗隆起 稳定性分析[J]. 岩土力学, 2022, 43(4): 909-917.
[5] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[6] 沈宇鹏, 王笃礼, 林园榕, 汤天笑, 刘欣, . 越冬基坑水平冻胀的防治措施效果分析[J]. 岩土力学, 2021, 42(5): 1434-1442.
[7] 顾晓强, 吴瑞拓, 梁发云, 高广运, . 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845.
[8] 鲁泰山, 刘松玉, 蔡国军, 吴恺, 夏文俊, . 软土地层基坑开挖扰动及土体再压缩变形研究[J]. 岩土力学, 2021, 42(2): 565-573.
[9] 厉立兵, 侯兴民, 李远东, . 一种基坑降水影响半径的有限元计算方法[J]. 岩土力学, 2021, 42(2): 574-580.
[10] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[11] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[12] 曾超峰, 薛秀丽, 宋伟炜, 李淼坤, 白宁. 开挖前降水引发基坑变形机制模型试验研究[J]. 岩土力学, 2020, 41(9): 2963-2972.
[13] 童星, 袁静, 姜叶翔, 刘兴旺, 李瑛, . 基于Mindlin解的基坑分层卸荷附加应力计算 及回弹变形的多因素影响分析[J]. 岩土力学, 2020, 41(7): 2432-2440.
[14] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[15] 王成汤, 王浩, 覃卫民, 钟国强, 陈舞, . 基于多态模糊贝叶斯网络的地铁车站 深基坑坍塌可能性评价[J]. 岩土力学, 2020, 41(5): 1670-1679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .