岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 687-697.doi: 10.16285/j.rsm.2022.1448

• 测试技术 • 上一篇    下一篇

新型电控式钻孔剪切仪的研制及测试验证

朱建民1,郑建国1, 2,于永堂1, 3,蔡晶1, 3,夏辉2   

  1. 1. 西安建筑科技大学 土木工程学院,陕西 西安 710055;2. 机械工业勘察设计研究院有限公司 陕西省特殊土重点实验室,陕西 西安 710043; 3. 中联西北工程设计研究院有限公司,陕西 西安 710077
  • 收稿日期:2022-09-18 接受日期:2022-11-24 出版日期:2023-11-16 发布日期:2023-11-21
  • 作者简介:朱建民,男,1995年生,博士研究生,主要从事岩土工程监测与检测技术的研究与应用。
  • 基金资助:
    国机集团重点研发项目(No. SINOMACH 2017–科–249);陕西省秦创原“科学家+工程师”队伍建设项目(No. 2022KXJ-086);陕西省重点研发计划项目(No. 2023-YBSF-499)。

Development and engineering application of a new electronically controlled borehole shear instrument

ZHU Jian-min1, ZHENG Jian-guo1, 2, YU Yong-tang1, 3, CAI Jing1, 3, XIA Hui2   

  1. 1. College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China; 2. Shaanxi Key Laboratory of Behavior and Treatment for Special Rock and Soil, China Jikan Research Institute of Engineering Investigations and Design Co., Ltd., Xi’an, Shaanxi 710043, China; 3. China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi’an, Shaanxi 710077, China
  • Received:2022-09-18 Accepted:2022-11-24 Online:2023-11-16 Published:2023-11-21
  • Supported by:
    This work was supported by the Key Research and Development Project of Sinomach (SINOMACH 2017–SR–249);the Scientist and Engineer Team Building Foundation of Shaanxi “Qinchuangyuan” (2022KXJ-086) and the Key Research and Development Projects of Shaanxi Province (2023-YBSF-499).

摘要:

针对传统钻孔剪切仪剪切速率难以控制、测试误差大、试验参数取值依靠经验等缺点,研制了新型电控式钻孔剪切仪,并阐述了新仪器的结构、测试原理及方法。为测试新仪器的稳定性,将新仪器应用于滑坡场地,与传统剪切仪测试结果进行对比。结果表明:首级法向应力可等于或稍大于初始法向应力σ0;法向应力增量Δs与临塑应力σf与初始法向应力σ0之间存在(σ0σf) / Δs =4.0~4.5的关系,可指导Δs 取值;当法向位移与时间关系曲线趋于水平、法向位移速率趋于0时,固结稳定,据此可确定土体固结时间;根据剪应力与剪切位移关系曲线,可直观地判断土体所受应力状态,指导剪切力施加;新仪器与传统剪切仪相比,测试的抗剪强度指标可靠,而后者所测黏聚力值很小,甚至为负值。4.5 m深度处剪切板压入土体和剪切过程的数值模拟表明:法向应力介于法向位移曲线的线性变形阶段时,土体可有效固结。剪切破坏时,剪切板附近土体产生明显错动,形成条状塑性破坏带,并逐渐形成上下贯通的塑性破坏带。

关键词: 土力学, 原位测试, 电控式, 钻孔剪切试验, 抗剪强度指标, 测试方法

Abstract:

A new type of electronically controlled borehole shear test apparatus was developed to aim at the shortcomings of traditional     borehole shear apparatus, such as difficulty in controlling the shear rate, large test error, and the value of test parameters relying on experience. The structure, testing principles and methods of the new apparatus were expounded. To test the stability of the new apparatus, the new apparatus was applied to the landslide site and compared with the test results of the traditional shearing apparatus. Some results are obtained as follows. The normal stress of the first stage can be equal to or slightly greater than the initial normal stress σ0. The relationship between normal stress increment Ds and plastic stress σf , the initial normal stress σ0 is (σ0σf) / Δs =4.0-4.5, which can guide the value of Δs. When the normal displacement vs. time curve tends to be the horizontal and the normal displacement rate tends to be 0, the consolidation is stable, and the soil consolidation time can be determined accordingly. According to the curves of shear stress vs. shear displacement, the stress state of the soil can be judged intuitively, thereby guiding the exerting of shear force. Compared with the traditional borehole shear test apparatus, the new instrument can obtain more reliable strength index values, while the cohesion value c measured by the traditional apparatus is very small or even negative. At the depth of 4.5 m, the numerical simulation of the shear plate being pressed into the soil and the shear process shows that the soil can be effectively consolidated when the normal stress is in the linear deformation stage of the normal displacement curve; the soil near the shear plate is dislocated, forming a strip-shaped plastic failure zone, and gradually developing into a plastic failure zone through an upper and lower when shear failure occurs.

Key words: soil mechanics, in-situ testing, electric control type, borehole shear test, shear strength parameter, test method

中图分类号: 

  • TU 411
[1] 黎亚舟, 李森, . 桶式基础沉贯阻力系数的理论研究[J]. 岩土力学, 2023, 44(S1): 443-448.
[2] 赵煜鑫, 李 旭, 赵红芬, 刘 艳. 宽饱和度范围非饱和土抗剪强度指标的演化模型[J]. 岩土力学, 2023, 44(10): 2809-2820.
[3] 易明星, 朱长歧, 王天民, 刘海峰, 马成昊, 王星, 张珀瑜, 瞿茹, . 启东某场地自升式平台插桩可行性试验研究[J]. 岩土力学, 2022, 43(S2): 487-496.
[4] 刘宽, 叶万军, 高海军, 董琪, . 酸碱污染黄土抗剪强度演化规律及微观机制[J]. 岩土力学, 2022, 43(S1): 1-12.
[5] 陈树峰, 孔令伟, 罗滔, . 超固结粉质黏土水平应力释放特征与 静止侧压力系数计算方法[J]. 岩土力学, 2022, 43(1): 160-168.
[6] 刘嘉, 冯德銮, . 考虑土颗粒微细观运动的多尺度耦合 有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1200.
[7] 杨爱武, 杨少朋, 郎瑞卿, 陈子荷, . 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593-600.
[8] 吴奔, 刘维, 史培新, 付春青. 盾构隧道掘进面失稳螺旋破坏机制分析[J]. 岩土力学, 2021, 42(3): 767-774.
[9] 张 泽, 马 巍, ROMAN Lidia, MELNIKOV Andrey, 杨 希, 李宏璧. 基于冻融次数−物理时间比拟理论的冻土 长期强度预测方法[J]. 岩土力学, 2021, 42(1): 86-92.
[10] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[11] 刘家顺, 王来贵, 张向东, 杨建军, 孙嘉宝, . 部分排水条件下饱和黏土 渐近状态本构模型研究[J]. 岩土力学, 2020, 41(2): 485-491.
[12] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[13] 严健, 何川, 晏启祥, 许金华. 雀儿山隧道冰碛地层冻胀力原位测试及计算分析[J]. 岩土力学, 2019, 40(9): 3593-3602.
[14] 刘家顺, 王来贵, 张向东, 李学彬, 张建俊, 任 昆, . 部分排水时饱和粉质黏土变围压循环三轴试验研究[J]. 岩土力学, 2019, 40(4): 1413-1419.
[15] 王丽琴, 邵生俊, 王 帅, 赵 聪, 石鹏鑫, 周 彪, . 原状黄土的压缩曲线特性[J]. 岩土力学, 2019, 40(3): 1076-1084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖云华,王 清,陈剑平. 基于优化技术的权重计算方法在岩体质量评价中的应用[J]. , 2009, 30(9): 2686 -2690 .
[2] 李明超,王忠耀,刘 杰. 水库库岸滑坡体稳定性与三维可视化模拟分析系统研究[J]. , 2009, 30(1): 270 -274 .
[3] 李新平,孟 建,徐鹏程. 溪洛渡水电站出线竖井爆破振动效应研究[J]. , 2011, 32(2): 474 -480 .
[4] 蔡国庆,赵成刚,刘 艳. 一种预测不同温度下非饱和土相对渗透系数的间接方法[J]. , 2011, 32(5): 1405 -1410 .
[5] 袁运涛 ,施建勇. 土与结构界面位移特性静动力单剪试验研究[J]. , 2011, 32(6): 1707 -1712 .
[6] 王长虹 ,朱合华 . 多重分形与Kriging插值在地层模型生成中的应用[J]. , 2011, 32(6): 1864 -1868 .
[7] 常方强 ,贾永刚. 黄河口不同强度粉土液化特性的试验研究[J]. , 2011, 32(9): 2692 -2696 .
[8] 王光进 ,杨春和 ,孔祥云 ,刘天宁 . 超高台阶排土场散体块度分布规律及抗剪强度参数的研究[J]. , 2012, 33(10): 3087 -3092 .
[9] 林 江 ,胡万雨 ,孟凡理 ,邓建辉 ,陈佳伟 . 瀑布沟大坝心墙拱效应分析[J]. , 2013, 34(7): 2031 -2035 .
[10] 丁选明 ,刘汉龙 . 轴对称均匀黏弹性地基中现浇薄壁管桩竖向动力响应简化解析方法[J]. , 2008, 29(12): 3353 -3359 .