岩土力学 ›› 2024, Vol. 45 ›› Issue (1): 108-116.doi: 10.16285/j.rsm.2023.0059

• 基础理论与实验研究 • 上一篇    下一篇

石灰粉煤灰固化石油污染土的渗透特性及其工程再利用探讨

李敏1, 2,李辉1,于禾苗1,赵博华1,齐振霄1   

  1. 1. 河北工业大学 土木与交通学院,天津 300401;2. 河北工业大学 河北省土木工程技术创新中心,天津 300401
  • 收稿日期:2023-01-16 接受日期:2023-03-09 出版日期:2024-01-10 发布日期:2024-01-10
  • 作者简介:李敏,女,1985年生,博士,教授,主要从事污染土的处置研究。
  • 基金资助:
    国家自然科学基金(No.52278341,No.51978235);河北省自然科学基金(No.E2023202087,No.E2018202274)

Discussion on permeability characteristics of lime and fly ash solidified oil-contaminated soil and its engineering reuse

LI Min1, 2, LI Hui1, YU He-miao1, ZHAO Bo-hua1, QI Zhen-xiao1   

  1. 1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Hebei Innovation Center of Civil Engineering Technology, Hebei University of Technology, Tianjin 300401, China
  • Received:2023-01-16 Accepted:2023-03-09 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52278341, 51978235) and the Natural Science Foundation of Hebei (E2023202087,E2018202274).

摘要:

固化改性污染土的渗透性是推进污染土工程再利用需关注的指标之一。借助GDS环境土柔性壁渗透测试仪,优选兼具吸附与固化作用的石灰粉煤灰作为固化材料,以围压、渗透压、污染强度为变量参数,以固化前后石油污染土的渗透系数及土中残余含油量为指标,结合X射线衍射和扫描电镜,厘清渗透性演变及污染物迁移扩散规律,并以此探讨固化石油污染土的工程再利用性。研究结果表明:固化产物对石油分子的吸附作用弱化了石油斥水性,增加了渗透的有效通道,固化石油污染土的渗透系数较未固化石油污染的提高了两个数量级;土体干密度增大会增强对石油的吸附截流作用,围压、渗透压及污染水平的增大会增强土颗粒间相互作用,均引起石油污染土及固化石油污染土渗透性降低。固化作用可有效控制渗透作用下石油污染物的迁移扩散,各部位的残余含油量均非常接近于初始含油量,避免了渗透污染风险。结合石灰粉煤灰固化石油污染土力学特性(抗压强度为1 280.10 kPa,抗剪强度为388.88 kPa)、渗透性(渗透系数为4.28×10−6~7.39×10−6 cm/s)及迁移控制性(波动率为0.30%~4.90%),石灰粉煤灰固化石油污染土可考虑用于有防渗要求的路基类填筑材料进行工程再利用。

关键词: 石油污染土, 固化稳定, 工程再利用, 渗透性, 石灰, 粉煤灰

Abstract:

The permeability of treated contaminated soil is an important factor to consider when reusing polluted soil in engineering projects. In this study, lime and fly ash were chosen as solidification materials due to their ability to both adsorb and solidify contaminants. The permeability coefficients of petroleum-contaminated soil before and after solidification, as well as the residual petroleum content within the soil, was investigated under varying parameters such as confining pressure, osmotic pressure and contamination intensity. X-ray diffraction and scanning electron microscopy were used to analyze the evolution of permeability and the migration and diffusion patterns of pollutants, providing insights into the engineering reutilization potential of solidified petroleum-contaminated soil. The results showed that the adsorption effect of the solidified product on petroleum molecules weakened the hydrophobicity of the petroleum, increasing the effective permeation pathways in the soil. The permeability coefficient of solidified petroleum-contaminated soil was two orders of magnitude higher compared to non-solidified soil. Both solidified and non-solidified petroleum-contaminated soil exhibited decreased permeability due to the enhanced adsorption and interception capacity of the soil matrix for petroleum, as well as the elevated confining pressure, osmotic pressure, and contamination level, which intensified the interception among soil particles. The solidification process effectively controlled the migration and diffusion of petroleum contaminants under permeation conditions. The residual petroleum content in various locations closely approximated the initial content, reducing the risk of pollution through permeation. Considering the mechanical properties (compressive strength of 1 280.1 kPa, shear strength of 388.88 kPa), permeability (ranging from 4.28×10−6 cm/s to 7.39×10−6 cm/s), and migration control characteristics (fluctuation rate from 0.3% to 4.9%) of lime and fly ash, it can be concluded that lime and fly ash solidified petroleum-contaminated soil can be reused in the construction of subgrade materials that require impermeability.

Key words: petroleum-contaminated soil, solidification and stabilization, engineering reutilization, permeability, lime, fly ash

中图分类号: 

  • X53,TU43
[1] 张艳美, 张建, 袁彦昊, 孙文秀, . 纳米SiO2和石灰固化滨海石油污染土试验研究[J]. 岩土力学, 2023, 44(S1): 259-267.
[2] 刘映晶, 杨杰, 朱汉华, 尹振宇, . 一种新的高渗透性地层中盾构隧道同步注浆浆液损失的多物理场模拟方法[J]. 岩土力学, 2023, 44(9): 2744-2756.
[3] 李新明, 张浩扬, 武迪, 郭砚睿, 任克彬, 谈云志, . 石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603.
[4] 张延杰, 何萌, 宋萌, 曹立, 赵海涛, 李梅. 富水砂卵石地层力学特性研究[J]. 岩土力学, 2023, 44(6): 1739-1747.
[5] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[6] 李敏, 于禾苗, 马国伟, 柴寿喜, . 石灰粉煤灰固化对盐渍土中石油污染物迁移的 控制性研究[J]. 岩土力学, 2022, 43(S2): 337-344.
[7] 梁仕华, 冯德銮. 硫铝酸盐水泥协同垃圾焚烧副产物固化浓缩液 污泥的强度和水稳定性试验研究[J]. 岩土力学, 2022, 43(6): 1453-1468.
[8] 张虎元, 王赵明, 朱江鸿, 周光平, . 混合型缓冲材料砌块渗透性及其各向异性研究[J]. 岩土力学, 2022, 43(3): 573-581.
[9] 蔡光华, 周伊帆, 潘智生, 李江山, . 生石灰激发GGBS固化高含水率香港海相 沉积物的物理力学性质研究[J]. 岩土力学, 2022, 43(2): 327-336.
[10] 谭洵, 何星星, 陈亿军, 刘磊, 万勇, . 陈化污泥理化特性对泥饼渗透性的影响研究[J]. 岩土力学, 2022, 43(2): 479-488.
[11] 梁冰, 张柴, 刘磊, 陈锋, . 垃圾土现场渗透性测定与土水特性反演[J]. 岩土力学, 2021, 42(6): 1493-1500.
[12] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[13] 胡伟, 朱海涛, 蒋明镜, 李文昊, . 考虑能源土渗透性影响的水合物分解 超孔压特性研究[J]. 岩土力学, 2021, 42(10): 2755-2762.
[14] 谈云志, 占少虎, 胡焱, 曹玲, 邓永锋, 明华军, 沈克军, . 石灰-红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104-112.
[15] 朱秦, 苏立君, 刘振宇, 杨世豪, . 颗粒迁移作用下宽级配土渗透性研究[J]. 岩土力学, 2021, 42(1): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 胡 伟,黄 义,刘增荣. 循环荷载下饱和黄土不排水强度退化规律试验与理论研究[J]. , 2009, 30(10): 2996 -3000 .
[3] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[4] 赵明华,刘小平,黄立葵. 降雨作用下路基裂隙渗流分析[J]. , 2009, 30(10): 3122 -3126 .
[5] 徐远杰,潘家军,刘祖德. 混凝土面板堆石坝的一种坝坡修整算法[J]. , 2009, 30(10): 3139 -3144 .
[6] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. , 2009, 30(11): 3217 -3231 .
[7] 朱珍德,李道伟,蒋志坚,刘金辉,杨永杰. 温度循环作用下深埋隧洞围岩细观结构的定量描述[J]. , 2009, 30(11): 3237 -3241 .
[8] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[9] 孔位学,芮勇勤,董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. , 2009, 30(11): 3278 -3282 .
[10] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .