岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 511-524.doi: 10.16285/j.rsm.2023.0217

• 基础理论与实验研究 • 上一篇    下一篇

粉土地基中劲性复合桩抗压承载特性与荷载传递机制研究

文磊1, 2,刘钟1, 2,马晓华1, 2,张振3   

  1. 1. 浙江坤德创新岩土工程有限公司,浙江 宁波 315100;2. 坤德智慧岩土技术研究院,浙江 宁波 315100; 3. 同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2023-02-22 接受日期:2023-04-03 出版日期:2024-02-11 发布日期:2024-02-07
  • 作者简介:文磊,男,1991年生,博士,工程师,主要从事桩基础和软基处理方面的科研工作。wenleihhu@163.com

Compressive bearing capacity and load transfer mechanism of stiffened deep cement mixing pile installed in silt

WEN Lei1, 2, LIU Zhong1, 2, MA Xiao-hua1, 2, ZHANG Zhen3   

  1. 1. Zhejiang Kunde Innovate Geotechnical Engineering Co., Ltd., Ningbo, Zhejiang 315100, China; 2. Kunde Research Institute of Intelligent Geotechnical Technology, Ningbo, Zhejiang 315100, China; 3. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2023-02-22 Accepted:2023-04-03 Online:2024-02-11 Published:2024-02-07

摘要: 劲性复合桩(stiffened deep cement mixing pile,简称SDCM桩)兼具高强度芯桩的轴向荷载传递能力与搅拌桩较高的桩侧摩阻力优势,施工效率高、性价比高,在土木建筑领域中得到推广应用。然而,由于其荷载传递机制尚缺乏统一认识,现有计算方法与实测承载力差异较大。基于此,开展了粉土地基中SDCM桩现场足尺试验,研究了其抗压承载特性与荷载传递机制。搅拌桩固化剂采用普通水泥和GS固化剂(gypsum-slag soil hardening agent)。依据实测荷载-位移曲线分析了单桩抗压极限承载力及不同固化剂的影响,并通过现场桩身取芯及芯样无侧限抗压试验分析了现场施工水泥土与室内试样强度的差异。建立了考虑芯桩-水泥土、水泥土-土体接触面的三维弹塑性有限元模型,分析了竖向下压荷载条件下桩身轴力、接触面的剪切应力分布规律,探讨了SDCM桩的荷载传递机制与承载力提高原因。研究结果表明:粉土地基中SDCM桩抗压承载力大于纯搅拌桩和单独芯桩抗压承载力之和的1.5倍;在端阻力发挥作用后,桩底水泥土由于轴向受压变形,芯桩-水泥土之间的剪切变形会大幅增加,该位置易产生剪切破坏。水泥土固化后与地基土接触面性能的改善是SDCM桩相对传统灌注桩具有更高的承载力的主要原因。

关键词: 劲性复合桩, 粉土地基, 抗压承载力, 现场试验, 数值模拟

Abstract: Stiffened deep cement mixing (SDCM) pile are gaining popularity in civil and architectural engineering due to their combination of core pile advantages, such as high axial load transfer ability, and deep mixing column advantages, such as high side friction. SDCM piles offer high construction efficiency, high bearing capacity, and lower costs. However, the existing calculation methods for determining their bearing capacity often differ significantly from actual test results due to a lack of unified understanding regarding their load transfer mechanism. To address this, full-scale field tests of SDCM piles embedded in silt were conducted to study the compressive bearing characteristics and load transfer mechanism. Ordinary cement and gypsum-slag soil hardening agent were both used as the binder materials in SDCM pile. The pile load-displacement curves were measured, and the ultimate bearing capacity of a single SDCM pile under compression was analyzed. The influence of binder materials was also checked. Coring tests were conducted to obtain its unconfined compressive strength (UCS). The discreteness of UCS between the field mixing cemented soil and the laboratory test were also analyzed. A three-dimensional elastoplastic finite element numerical model considering the interfaces of core pile-cemented soil and cemented soil-in-situ soils was established. The distribution of axial force along pile shaft and the shear stress between contact surfaces under different loads applied to the pile head were explored. The load transfer mechanism was analyzed and the higher bearing capacity compared with bored piles were discussed. The results show that the ultimate compressive bearing capacity of the SDCM pile in silt is larger than 1.5 times the sum of the compressive bearing capacity of the pure deep mixing pile and the single core pile. As the end resistance takes effect and increases, the shear deformation between the core pile and the cemented soil at the pile tip will increase rapidly due to the axial compression of the cemented soil. Thus, this position is prone to shear failure. Compared with traditional bored piles, the improvement of the bearing capacity the SDCM pile is mainly due to the interface improvement caused by solidification.

Key words: stiffened deep cement mixing pile, silt, compressive bearing capacity, field test, numerical simulation

中图分类号: 

  • TU 47
[1] 刘新荣, 王浩, 郭雪岩, 罗新飏, 周小涵, 许彬, . 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究[J]. 岩土力学, 2024, 45(2): 563-576.
[2] 朱寅斌, 李长冬, 周佳庆, 项林语, 姜茜慧, 朱文宇, . 考虑基质渗透性的粗糙单裂隙非达西流动特性研究[J]. 岩土力学, 2024, 45(2): 601-611.
[3] 华涛, 申林方, 王志良, 李泽, 徐则民. 基于近场动力学的岩石水力压裂数值模拟及裂隙网络定量分析[J]. 岩土力学, 2024, 45(2): 612-622.
[4] 黄生根, 张义, 霍昊, 陈常青. 软土地区深基坑支护工程格构柱变形规律研究[J]. 岩土力学, 2023, 44(S1): 533-538.
[5] 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(S1): 623-633.
[6] 乔亚飞, 闫凯, 赵腾腾, 丁文其, . 软土地区超深圆形竖井的坑底隆起特性与机制[J]. 岩土力学, 2023, 44(9): 2707-2716.
[7] 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399.
[8] 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016.
[9] 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614.
[10] 孙彦晓, 刘松玉, 童立元, 王峻, 崔佳, 李世龙, 李敏, . 长江漫滩区明挖隧道基坑降承压水优化分析[J]. 岩土力学, 2023, 44(6): 1800-1810.
[11] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[12] 陈慧芸, 冯忠居, 白少奋, 董建松, 夏承明, 蔡杰, . 桥梁桩基穿越溶洞的荷载传递机制试验研究[J]. 岩土力学, 2023, 44(5): 1405-1415.
[13] 王春, 胡慢谷, 王成, . 热−水−力作用下圆孔花岗岩的动态损伤特征及结构模型[J]. 岩土力学, 2023, 44(3): 741-756.
[14] 朱锐, 周峰, 陈廷柱, 邓亚光, . 劲性复合桩挤土效应及承载力作用机制研究[J]. 岩土力学, 2023, 44(12): 3577-3586.
[15] 张正哲, 贾科敏, 许成顺, 潘汝江. 倾斜液化场地−桩基−结构体系在近场脉冲与非脉冲地震动下地震响应差异分析[J]. 岩土力学, 2023, 44(12): 3629-3638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .