岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 477-488.doi: 10.16285/j.rsm.2023.1529

• 基础理论与实验研究 • 上一篇    下一篇

西宁盆地黄土区草本植物边坡电阻率与土体物理力学性质关系研究

赵迎宵1,何伟鹏1,丁晓英2,詹俊2,胡夏嵩1,刘昌义1,缪晓星3, 王延秀3,卢海静4,邢光延4,李华坦5,张培豪1   

  1. 1. 青海大学 地质工程系,青海 西宁 810016;2. 青海省第三地质勘查院,青海 西宁 810008; 3. 青海省水土保持中心,青海 西宁 810000;4. 青海大学 农牧学院,青海 西宁 810016;5. 青海大学 土木水利学院,青海 西宁 810016
  • 收稿日期:2023-10-11 接受日期:2023-11-30 出版日期:2024-02-11 发布日期:2024-02-07
  • 通讯作者: 胡夏嵩,男,1965年生,博士,教授,主要从事环境岩土工程与工程地质等领域的教学和研究工作。E-mail: huxiasong@tsinghua.org.cn
  • 作者简介:赵迎宵,女,2000年生,硕士研究生,主要从事地质工程及其地质灾害防治等方面的研究工作。2469353362@qq.com
  • 基金资助:
    国家自然科学基金(No. 42041006);青海省自然科学基金(No. 2020-ZJ-906);第二次青藏高原综合科学考察研究项目(No. 2019QZKK0905)

Relationship between resistivity and soil physical and mechanical properties of herbaceous slopes in the loess area of Xining Basin

ZHAO Ying-xiao1, HE Wei-peng1, DING Xiao-ying2, ZHAN Jun2, HU Xia-song1, LIU Chang-yi1, MIAO Xiao-xing3, WANG Yan-xiu3, LU Hai-jing4, XING Guang-yan4, LI Hua-tan5, ZHANG Pei-hao1   

  1. 1. Department of Geological Engineering, Qinghai University, Xining, Qinghai 810016, China; 2. The Third Geological Exploration Institute of Qinghai Province, Xining, Qinghai 810008, China; 3. Qinghai Soil and Water Conservation Research Center, Xining, Qinghai 810000, China; 4.College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China; 5.College of Civil Water Conservancy, Qinghai University, Xining, Qinghai 810016, China
  • Received:2023-10-11 Accepted:2023-11-30 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42041006), the Natural Science Foundation of Qinghai Province (2020-ZJ-906) and the Second Qinghai-Tibet Plateau Comprehensive Scientific Research Project(2019QZKK0905).

摘要: 为研究高寒干旱-半干旱环境黄土区种植不同类型草本植物边坡土体电阻率与其物理力学性质之间的定量关系,探讨电阻率数值反映边坡土体物理力学性质及其变化特征,在西宁盆地长岭沟流域自建试验区选取未种植裸坡以及种植生长期为3年的垂穗披碱草(Elymus nutans Griseb.)、老芒麦(Elymus sibiricus Linn.)、细茎冰草(Agropyron trachycaulum Linn. Gaertn.)、高羊茅(Festuca arundinacea Schreb.)的边坡共5种类型边坡为研究对象。通过开展边坡土体密度、含水率、含根系与不含根系土体直剪试验,对比不同草本植物根系对边坡土体物理力学性质的影响。在此基础上,利用二维电阻率层析成像方法建立不同边坡土体物理力学性质指标与土体电阻率间的定量关系。结果表明:(1)与未种植裸坡相比较,种植老芒麦边坡上层(0~10 cm)土体含水率增幅最大为26.53%;种植高羊茅边坡上层(0~10 cm)土体平均密度降幅最大为18.30%;种植垂穂披碱草边坡上层(0~10 cm)土体黏聚力附加值最大,且为未种植裸坡的2.75倍。(2)5种类型边坡的电阻率受根系分布和边坡位置因素的共同影响,电阻率随着深度增加逐渐降低。4种草本边坡坡面以下0~20 cm处土体电阻率均较裸坡大,该深度为根系分布大致范围。(3)5种边坡土体物理力学性质与电阻率数据之间存在拟合方程式(相关系数R2为0.48~0.77),且通过Pearson相关性分析得到边坡土体黏聚力c与电阻率间的相关性相对最高,相关系数R2为0.765。上述研究结果反映出可通过电阻率层析成像技术反映边坡土体物理力学性质,以及边坡土体中植物根系分布特征,可为研究区及其周边地区采用植物有效防治水土流失、浅层滑坡等灾害提供理论依据和实际指导意义。

关键词: 高寒干旱-半干旱环境, 西宁盆地, 二维电阻率层析成像, 边坡土体电阻率, 土体物理力学性质, Pearson相关性分析

Abstract: This study aims to investigate the quantitative relationship between resistivity and the physical and mechanical properties of soil in different types of herbaceous slopes in the alpine arid and semi-arid loess area. The research is conducted in the self-built test area of Changlinggou Basin in Xining Basin. Five types of slopes, including Elymus nutans Griseb., Elymus sibiricus Linn., Agropyron trachycaulum Linn. Gaertn., Festuca arundinacea Schreb., and bare slopes are selected as the research objects. These slopes have been planted for 3 years. The study compares the effects of different herbaceous roots on the physical and mechanical properties of the soil by conducting tests of soil density and water content, and direct shear test on the soils with and without root systems. Based on these tests, a quantitative relationship between the physical and mechanical properties of different slope soils and resistivity data is established using 2D electrical resistivity tomography. The results show that: (1) Compared with the bare slope without planting, the maximum increase of soil moisture content in the upper layer (0–10 cm) of the Elymus sibiricus Linn. slope is 26.53%. The average soil density of the upper layer (0–10 cm) of the Festuca arundinacea Schreb. slope was 18.30% lower than that of the bare slope. The maximum added value of soil cohesion in the upper layer (0–10 cm) of the Elymus nutans Griseb. slope is 2.75 times that of the bare slope. (2) The resistivity characteristics of five types of slopes are affected by root distribution and slope position factors, and the resistivity value decreases with the increase of depth. The soil resistivity value of the four herbaceous slopes is larger than that of the bare slope at 0–20 cm, which is the approximately range of root distribution. (3) There are fitting equations between the physical and mechanical properties and resistivity data of five kinds of slope soils (with correlation coefficients R2 ranging from 0.48 to 0.77), and the Pearson correlation analysis shows that the cohesion c value of the slope soil has the highest correlation with resistivity, with an R2 value of 0.765. The results of this study demonstrate that 2D resistivity tomography technology can reflect the physical and mechanical properties of slope soil, as well as the distribution characteristics of plant roots. This provides a theoretical basis and practical guidance for effectively preventing and controlling soil erosion, shallow landslides, and other disasters in the study area and its surrounding areas.

Key words: alpine arid and semi-arid regions, Xining Basin, 2D electrical resistivity tomography, resistivity of slopes, soil physical and mechanical properties, Pearson correlation analysis

中图分类号: 

  • TU 444
[1] 康佐, 亢佳伟, 邓国华, . 欠压密饱和黄土基本物理力学性质研究[J]. 岩土力学, 2023, 44(11): 3117-3127.
[2] 刘德仁, 张转军, 王旭, 张艳丰, 安政山, 金芯, . 水蒸汽增湿重塑非饱和黄土地基现场应用参数研究[J]. 岩土力学, 2023, 44(S1): 73-82.
[3] 邵帅, 邵生俊, 高梦洁, 刘小康, 王立新, 严广艺, . 水-力耦合非饱和黄土的弹塑性模型适用性研究[J]. 岩土力学, 2023, 44(S1): 436-442.
[4] 李品良, 许强, 刘佳良, 何攀, 纪续, 陈婉琳, 彭大雷, . 盐分影响重塑黄土渗透性的微观机制试验研究[J]. 岩土力学, 2023, 44(S1): 504-512.
[5] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[6] 赵凯, 邵帅, 邵生俊, 魏军政, 张少英, 张玉. 平面应变下原状黄土的剪切带研究[J]. 岩土力学, 2023, 44(2): 433-441.
[7] 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460.
[8] 许健, 周立阳, 胡科, 李彦锋, 武智鹏, . 受振动荷载扰动裂隙性黄土单轴压缩力学行为研究[J]. 岩土力学, 2023, 44(1): 171-182.
[9] 刘德仁, 安政山, 徐硕昌, 王旭, 张转军, 金芯, 张严, . 靖远地区大厚度黄土地基浸水湿陷过程及土中竖向应力特征试验研究[J]. 岩土力学, 2023, 44(1): 268-278.
[10] 蒋小虎, 黄跃廷, 胡海军, 陈铄, 陈锐, 王崇华, 汪慧, 康顺祥, . 基于原位双环、试坑浸水试验和数值模拟反演的Q3黄土饱和渗透系数对比研究[J]. 岩土力学, 2022, 43(11): 2941-2951.
[11] 朱学亮, 邵生俊, 沈晓钧, 邵帅, 刘小康, . 裂隙黄土边坡三维稳定性极限分析[J]. 岩土力学, 2022, 43(10): 2735-2743.
[12] 许健, 武智鹏, 陈辉, . 干湿循环效应下玄武岩纤维加筋黄土 三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36.
[13] 郝延周, 王铁行, 程磊, 金鑫, . 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986.
[14] 安宁, 晏长根, 王亚冲, 兰恒星, 包含, 许江波, 石玉玲, 孙巍锋, . 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501-510.
[15] 黄涛, 方祥位, 张伟, 申春妮, 雷宇龙, . 活性氧化镁−微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[2] 邵生俊,郑 文,王正泓,王 帅. 黄土的构度指标及其试验确定方法[J]. , 2010, 31(1): 15 -19 .
[3] 张莎莎,谢永利,杨晓华,戴志仁. 典型天然粗粒盐渍土盐胀微观机制分析[J]. , 2010, 31(1): 123 -127 .
[4] 齐吉琳,马 巍. 冻土的力学性质及研究现状[J]. , 2010, 31(1): 133 -143 .
[5] 潘晓明 ,孔 娟, 杨 钊, 刘 成. 统一弹塑性本构模型在ABAQUS中的开发与应用[J]. , 2010, 31(4): 1092 -1098 .
[6] 荆永滨,王李管,贾明涛,陈建宏. 基于TetGen的复杂FLAC3D模型可视化建模方法[J]. , 2010, 31(8): 2655 -2660 .
[7] 胡著秀,张建海,周 钟,饶宏玲. 锦屏一级高拱坝坝基加固效果分析[J]. , 2010, 31(9): 2861 -2868 .
[8] 黄强兵,彭建兵,邓亚虹,范 文. 西安地铁2号线隧道穿越地裂缝带的设防参数[J]. , 2010, 31(9): 2882 -2888 .
[9] 王 沛,王晓燕,柴寿喜. 滨海盐渍土的固化方法及固化土的偏应力-应变[J]. , 2010, 31(12): 3939 -3944 .
[10] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .