›› 2010, Vol. 31 ›› Issue (S1): 298-302.

• 基础理论与实验研究 • 上一篇    下一篇

基于逐步判别分析的砂土液化预测研究

张菊连1,沈明荣1, 2   

  1. 1.同济大学 土木学院地下建筑与工程系,上海 200092;2.同济大学 岩土及地下工程教育部重点实验室,上海 200092
  • 收稿日期:2010-04-23 出版日期:2010-08-10 发布日期:2010-09-09
  • 作者简介:张菊连,女,1984年生,博士研究生,从事边坡岩体分级及岩土工程方面的研究。
  • 基金资助:

    上海市重点学科建设资助项目(No. B308)。

Sand liquefaction prediction based on stepwise discriminant analysis

ZHANG Ju-lian1, SHEN Ming-rong 1, 2   

  1. 1. Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2010-04-23 Online:2010-08-10 Published:2010-09-09

摘要:

为高效地进行砂土液化的预测,运用逐步判别法,从8个液化影响因子中选择平均粒径、烈度、震中距等3个判别能力显著的影响因子,建立判别函数,并利用工程实例进行验证。研究结果表明:逐步判别分析模型预测性能良好,且能有效地选择对砂土液化起主导作用的因子。相比距离判别分析,逐步判别分析建立的判别函数更加稳定,且所需测试因子较少,节省了因试验和现场调查所耗费的大量人力、物力和时间,因此逐步判别分析是一种值得推广的砂土液化预测方法。

关键词: 砂土液化, 逐步判别, 预测

Abstract:

In order to analyze sand liquefaction problem efficiently, the stepwise discriminant method was applied to its prediction; the factors with significant discriminant ability were selected to establish discriminant function. A number of site cases were used to verify its validity and accuracy. The results show that: stepwise discriminant analysis model has excellent liquefaction predicting performance; and it can choose effective factors which play a leading role in sand liquefaction. Compared to the distance discriminant analysis, discriminant function based on stepwise discriminant analysis is more stable; and fewer factors investigated or tested are needed, which saves human and material resources for the project construction. Thus it is worthwhile to apply stepwise discriminant analysis to liquefaction prediction widely.

Key words: sand liquefaction, stepwise discriminant, prediction

中图分类号: 

  • TU 441
[1] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[2] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[3] 程爱平, 张玉山, 戴顺意, 董福松, 曾文旭, 李丹峰, . 单轴压缩胶结充填体声发射参数 时空演化规律及破裂预测[J]. 岩土力学, 2019, 40(8): 2965-2974.
[4] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[5] 王 岗, 潘一山, 肖晓春, . 单轴加载煤体破坏特征与电荷规律研究及应用[J]. 岩土力学, 2019, 40(5): 1823-1831.
[6] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[7] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[8] 张 勋, 黄茂松, 胡志平, . 砂土中单桩水平循环累积变形特性模型试验[J]. 岩土力学, 2019, 40(3): 933-941.
[9] 郑 栋, 黄劲松, 李典庆, . 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-719.
[10] 钟国强, 王 浩, 李 莉, 王成汤, 谢壁婷, . 基于SFLA-GRNN模型的基坑地表最大沉降预测[J]. 岩土力学, 2019, 40(2): 792-798.
[11] 钟祖良, 别聪颖, 范一飞, 刘新荣, 罗亦琦, 涂义亮, . 土石混合体注浆扩散机制及影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4194-4202.
[12] 刘勇, 胡宝丹, 陈喆. 滑坡监测点多信息相似性度量方法研究[J]. 岩土力学, 2019, 40(10): 4001-4010.
[13] 黄建, 姚仰平. 高填方边坡失稳时间预测的实用模型[J]. 岩土力学, 2019, 40(10): 4057-4064.
[14] 杨文保, 吴琪, 陈国兴, . 长江入海口原状土动剪切模量预测方法探究[J]. 岩土力学, 2019, 40(10): 3889-3896.
[15] 陈 磊, 赵学胜, 汤益先, 张 红, . 结合InSAR的幂指数Knothe模型参数拟合与评估[J]. 岩土力学, 2018, 39(S2): 423-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[2] 刘恩龙. 岩土破损力学:结构块破损机制与二元介质模型[J]. , 2010, 31(S1): 13 -22 .
[3] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[4] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[5] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[6] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[7] 陈 林,张永兴,冉可新. 考虑剪应力作用的挡土墙主动土压力计算[J]. , 2009, 30(S2): 219 -223 .
[8] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[9] 石 崇 ,徐卫亚 ,张 玉 ,李德亮 ,刘 和. 基于元胞自动机模型的堆积体动力学参数研究[J]. , 2011, 32(6): 1795 -1800 .
[10] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .