›› 2016, Vol. 37 ›› Issue (1): 156-165.doi: 10.16285/j.rsm.2016.01.019

• 岩土工程研究 • 上一篇    下一篇

格宾网加筋红层软岩土石混填路堤力学行为的现场测试与数值模拟

蒋建清1,杨果林2   

  1. 1. 湖南城市学院 土木工程学院,湖南 益阳 413000;2. 中南大学 土木工程学院,湖南 长沙 410075
  • 收稿日期:2014-05-04 出版日期:2016-01-11 发布日期:2018-06-09
  • 作者简介:蒋建清,男,1979年生,博士,副教授,主要从事加筋土结构、混凝土结构和砌体结构方面的研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No.51308198);湖南省教育厅资助科研项目(No.14B034);湖南省交通科技项目(No.200612)。

Field test and numerical simulation on mechanical behavior of red bed soil-rock embankment reinforced with gabion

JIANG Jian-qing1, YANG Guo-lin2   

  1. 1. School of Civil Engineering, Hunan City University, Yiyang, Hunan, 413000, China; 2. School of Civil Engineering, Central South University, Changsha, Hunan, 410075, China
  • Received:2014-05-04 Online:2016-01-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51308198), Scientific Research Foundation of the Education Department of Hunan Province (14B034) and the Program for Communications Science and Technology of Hunan Province (200612).

摘要: 为掌握格宾网加筋红层软岩土石混填路堤的力学行为,通过加筋路堤现场测试研究路堤土压力、路堤内部潜在破裂面、格宾网筋材和石笼墙面变形等力学行为,并结合FLAC3D数值模拟,分析格宾网加筋间距、加筋长度、地基土的压缩模量、强度指标及路堤填料压实度变化对其力学性状的影响。现场测试表明:格宾网拉应变沿路堤横断面非均匀分布,路堤内部潜在破裂面近似“改进双线段简化破裂面”;石笼面墙在墙背平面内类似梁弯曲变形,在墙背平面外以向外鼓胀变形为主;墙后同一标高处填土竖直土压力呈非均匀分布;墙背实测水平土压力与墙高呈非线性关系,路堤填筑高度大于7.5 m时,墙背水平土压力接近朗肯主动土压力值。数值模拟表明:加筋间距及长度变化对路堤侧移的影响明显大于对沉降的影响,格宾网竖向加筋间距宜为0.5~1.0 m,水平加筋长度宜为0.7H~1.0H;地基土压缩模量改变对路堤沉降有较大影响,为控制路堤不均匀沉降,地基土压缩模量宜大于5 MPa;为控制墙面侧移增长速度,地基土黏聚力不小于15 kPa;红层软岩土石混填路堤填料压实度宜控制在93%以上。

关键词: 加筋土, 红层软岩土石混填路堤, 力学行为, 现场测试, 数值模拟

Abstract: To understand the mechanical behaviours of red bed soil-rock embankment reinforced with gabion, field tests are conducted to obtain soil pressure, the deformations of gabion reinforcement and gabion wall and the potential internal fracture surface. Meanwhile, based on in-situ tests and FLAC3D numerical modelling, a comprehensive analysis is performed to investigate the effects of reinforcement spacing, reinforcement length, compression modulus, strength indicators of foundation soil and compaction of embankment fill on mechanical behaviours of the embankment. Field tests indicate that the tensile strain distribution of gabion reinforcement along the cross-section of embankment is non-uniform. Besides, the internal potential failure surface of embankment is similar to ‘improved simplified double-segment rupture surface’. The deformation of gabion wall tends to be beam bending inside the back plane of gabion wall, whereas external-oriented bulging is outside the back plane of gabion wall. It is found that the vertical earth pressure in backfill at the same level behind the wall exhibits non-uniform distribution. The relationship between the measured earth pressure at the back wall and the height of the wall is non-linear. When the filling height of the embankment is greater than 7.5 m, the horizontal earth pressure along the back wall can refer Rankine active earth pressure value. From numerical simulation, it can be noticed that the effect of the reinforcement spacing and length on the lateral displacement of embankment is significantly greater than on the settlement. As a result, the vertical spacing and horizontal reinforcement length of the gabion reinforcement should be recommended as 0.5-1.0 m and 0.7H-1.0H, respectively. Since the changes in the compression modulus of foundation soil have a significant effect on the embankment settlement, the compression modulus of foundation soil approaches to be greater than 5 MPa for controlling embankment uneven settlement. In the aim of controlling the growth rate of lateral displacement of the gabion wall, soil cohesion should remain higher than 15 kPa. Finally, the compaction degree of embankment fill should not be less than 93%.

Key words: reinforced soil, red beds soil-rock mixture embankment, mechanical behaviour, field test, numerical simulation

中图分类号: 

  • TU 473.1

[1] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[2] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[3] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[4] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[5] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[6] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[7] 李斌, 黄 达, 马文著, . 层理面特性对砂岩断裂力学行为的影响研究[J]. 岩土力学, 2020, 41(3): 858-868.
[8] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[9] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[10] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[11] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[12] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[13] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[14] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[15] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!