›› 2011, Vol. 32 ›› Issue (S1): 61-65.

• 基础理论与实验研究 • 上一篇    下一篇

基于cut-off方法刚性承台下群桩基础优化分析

梁发云1, 2,陈海兵1, 2   

  1. 1. 同济大学 岩土及地下工程教育部重点试验室,上海 200092;2. 同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2011-02-22 出版日期:2011-05-15 发布日期:2011-05-16
  • 作者简介:梁发云,男,1976年生,博士,副教授,博士生导师,主要从事桩基础、深基坑工程等领域的教学科研工作。
  • 基金资助:

    高等学校博士学科点专项科研基金(No. 20070247017);教育部第37批留学回国人员科研启动基金

Optimization analysis of group piles below rigid raft with a cut-off method

LIANG Fa-yun1, 2, CHEN Hai-bing1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2011-02-22 Online:2011-05-15 Published:2011-05-16

摘要: 针对刚性筏板下群桩基础优化设计问题进行分析,通过改变桩长分布来调整各桩的荷载分担,群桩分析采用基于弹性理论的积分方程方法,并通过cut-off方法来反映桩的弹塑性特性,实现群桩基础的弹塑性优化分析,改进了常规弹性分析方法的缺陷。算例分析表明,随着外荷载的不断增加,角桩首先达到极限荷载,对角桩超出极限荷载的部分进行重新分布,继而使得边桩逐渐达到极限承载状态,继续加载直至内桩也达到极限承载状态,从而引起桩筏基础的整体破坏。采用cut-off方法可以改进基础变刚度优化设计,使之与实际情况更为吻合。

关键词: cut-off方法, 长短桩, 优化分析, 刚性承台, 弹塑性

Abstract: Optimization of group piles below a rigid raft is analyzed; and load carried by individual pile is adjusted by the length of pile, respectively. To analyze elastoplastic behaviour of piles, a “cut-off” method is adopted to limit pile capacity in the integral equation considering linear behaviour of piles; and then the optimization results are easily obtained. The analysis shows that the corner piles reached to their bearing capacity at first; and then the side piles come at their bearing capacity gradually with redistribution of extra loads of the corner piles. With the increase of acting loads, the inner piles come into ultimate state finally. In that case, the whole piled raft system reach to failure state at the same time. A “cut-off” method can be used to improve the foundation design based on the optimization of variable rigidity, which is more consistent with the actual situation.

Key words: cut-off method, long-short piles, optimization analysis, rigid cap, elastoplasticity

中图分类号: 

  • TU 473
[1] 柯锦福, 王水林, 郑宏, 杨永涛, . 基于修正对称和反对称分解的 三维数值流形元法应用推广[J]. 岩土力学, 2020, 41(2): 695-706.
[2] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[3] 邓涛, 林聪煜, 柳志鹏, 黄明, 陈文菁, . 大位移条件下水平受荷单桩的简明弹塑性计算方法[J]. 岩土力学, 2020, 41(1): 95-102.
[4] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[5] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[6] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[7] 杨骐莱, 熊勇林, 张 升, 刘干斌, 郑荣跃, 张 锋, . 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906.
[8] 张坤勇, 臧振君, 李 威, 文德宝, Charkley Frederick Nai, . 土体三维卸荷弹塑性模型及其试验验证[J]. 岩土力学, 2019, 40(4): 1313-1323.
[9] 丁潇, 谷拴成, 何晖, 张玉, . 单/多离层作用下锚杆受力特性分析[J]. 岩土力学, 2019, 40(11): 4299-4305.
[10] 莫品强, 高新慰, 黄子丰, 马丹阳, . 下穿隧道开挖引起的挤土桩沉降控制分析方法[J]. 岩土力学, 2019, 40(10): 3823-3832.
[11] 谷拴成,周 攀,黄荣宾. 锚杆–围岩承载结构支护下隧洞稳定性分析[J]. , 2018, 39(S1): 122-130.
[12] 高 强,张强勇,张绪涛,向 文,. 深部洞室开挖卸荷分区破裂机制的动力分析[J]. , 2018, 39(9): 3181-3194.
[13] 王小雯,张建民,李焯芬, . 波浪作用下饱和砂质海床土体与管线相互作用规律研究[J]. , 2018, 39(7): 2499-2508.
[14] 姚志华,连 杰,陈正汉,朱元青,方祥位,. 考虑细观结构演化的非饱和Q3 原状黄土弹塑性本构模型[J]. , 2018, 39(5): 1553-1563.
[15] 邹佑学,王 睿,张建民, . 砂土液化大变形模型在FLAC3D中的开发与应用[J]. , 2018, 39(4): 1525-1534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 张春会,于永江,赵全胜. 非均匀煤岩渗流-应力弹塑性耦合数学模型及数值模拟[J]. , 2009, 30(9): 2837 -2842 .
[4] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[5] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[6] 尹光志,王登科,张东明,魏作安. 基于内时理论的含瓦斯煤岩损伤本构模型研究[J]. , 2009, 30(4): 885 -889 .
[7] 侯公羽,牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. , 2009, 30(6): 1555 -1562 .
[8] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[9] 周延军 ,耿应春 ,王贵宾 ,唐洪林 ,李祖奎. 深部地层岩石力学性质测试与分析研究[J]. , 2011, 32(6): 1625 -1630 .
[10] 黄理兴. 岩石动力学研究成就与趋势[J]. , 2011, 32(10): 2889 -2900 .