岩土力学 ›› 2019, Vol. 40 ›› Issue (2): 809-817.doi: 10.16285/j.rsm.2018.2144

• 数值分析 • 上一篇    下一篇

抽水蓄能电站地下厂房围岩约束 及结构振动特性分析

崔 琦,侯建国,宋一乐   

  1. 武汉大学 土木建筑工程学院,湖北 武汉 430072
  • 收稿日期:2018-11-22 出版日期:2019-02-11 发布日期:2019-02-19
  • 通讯作者: 侯建国,男,1955年生,博士,教授,博导,主要从事工程结构可靠性基本理论与应用研究。E-mail: jghou@whu.edu.cn E-mail:bestgenius_qq@163.com
  • 作者简介:崔琦,男,1985年生,博士研究生,主要从事工程结构振动测试与分析研究。

Analyses of restraint of surrounding rock and structural vibration characteristics of underground powerhouse for pumped storage power station

CUI Qi, HOU Jian-guo, SONG Yi-le   

  1. School of Civil and Architectural Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2018-11-22 Online:2019-02-11 Published:2019-02-19

摘要: 为了掌握抽水蓄能电站地下厂房结构围岩约束条件、振动特性及评价标准,采用电测法对国内某大型抽水蓄能电站地下厂房结构的模态和动力响应进行了有限元计算及现场振动测试与分析。根据上下游边墙与围岩之间不同的约束条件,建立了4种有限元模型。通过有限元模态计算结果与现场模态测试结果对比分析发现:抽水蓄能电站地下厂房结构进行有限元模态计算时,比较合理的计算条件为厂房边墙边界节点与围岩法向接触,法向共同变形,切向不约束;围岩变形模量按Ⅲ类围岩选取,取变形模量为10 GPa,泊松比为0.25;混凝土弹性模量应按动弹性模量计算。通过地下厂房结构的动力响应测试发现:出现位移最大值的工况主要为发电开机或发电停机工况,说明发电开机和发电停机工况是抽水蓄能电站正常运行时地下厂房结构振动最不利工况,该电站发电开机和发电停机工况引起的振动对地下厂房围岩稳定并无影响,地下厂房围岩处于安全状态;厂房结构振动响应的频率主要是0.5、0.75、8.25 Hz等低频成分,这些低频分量可能是尾水管或蜗壳内水流脉动压力及机组基本转频或其倍频的频率成分,说明抽水蓄能电站地下厂房结构的振动响应主要是由水流脉动和机组转频所引起。通过对地下厂房结构进行安全评估分析,建议以0.2 mm和0.8 mm分别为抽水蓄能电站正常运行时地下厂房楼板在稳态工况和瞬态工况下的振动控制评价标准,该电站地下厂房结构的抗振性能基本满足安全要求。上述模态和动力响应的有限元计算及现场振动测试与分析结果,弥补了国内抽水蓄能电站地下厂房结构基于现场振动测试研究的不足,为抽水蓄能电站地下厂房结构抗振设计及振动安全评价提供了参考依据。

关键词: 抽水蓄能电站, 地下厂房结构, 围岩约束, 模态, 动力响应, 评价标准

Abstract: To understand the restraint of surrounding rock, vibration characteristics and evaluation standard of underground powerhouse structure, field tests and finite element analyses were conducted on a large pumped storage power station by using an electric testing method, to achieve the modal and dynamic response of underground powerhouse structure. Four types of finite element model are established according to different constraints between the upstream and downstream sidewalls and surrounding rocks. By comparing the results of finite element modal calculation and field test, it is found that when calculating the finite element modal of the underground powerhouse structure of the pumped storage power station, the reasonable calculating condition is that the boundary node of the powerhouse sidewall contacts with the surrounding rock in the normal direction. The deformation modulus of surrounding rock is selected according to the third type of surrounding rock, and the deformation modulus and Poisson's ratio are 10 GPa and 0.25, respectively. The elastic modulus of concrete should be calculated according to the dynamic elastic modulus. Through the dynamic response test of underground powerhouse structure, the maximum displacement is observed when the power generation is started or shut, which indicates that the start-up and shutdown of power generation are the most disadvantageous vibration conditions of underground powerhouse structure in normal operation of the pumped storage power station. The vibration caused by the start-up and shutdown of the power plant does not affect the stability of surrounding rock of the underground powerhouse, and the surrounding rock of the underground powerhouse is in a safe state. The frequency of dynamic response is mainly low-frequency components such as 0.5, 0.75 and 8.25 Hz that may be from the fluctuating pressure in the draft tube or spiral case and the basic frequency or frequency doubling of the unit, which means the vibration response of the underground powerhouse structure is mainly caused by the flow fluctuation and the unit frequency. Based on the safety assessment and analysis of underground powerhouse structure, it is suggested that 0.2 and 0.8 mm should be used as the evaluation criteria for the vibration control of underground powerhouse floor under steady and transient conditions, respectively. The anti-vibration performance of underground powerhouse structure basically satisfies the safety requirements. The analyses of finite element calculation and vibration tests of modal and dynamic response not only make up for the deficiency of the vibration test, but also provide a reference for anti-vibration design and vibration safety evaluation of underground powerhouse structure for pumped storage power stations.

Key words: pumped storage power station, underground powerhouse structure, restraint of surrounding rock, modal, dynamic response, evaluation criterion

中图分类号: 

  • TU 435
[1] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[2] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[3] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[4] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[5] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[6] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[7] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[8] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[9] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[10] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[11] 于一帆, 王平, 王会娟, 许书雅, 郭海涛, . 堆积层滑坡地震动力响应的物理模型试验[J]. 岩土力学, 2019, 40(S1): 172-180.
[12] 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644.
[13] 姜立春, 罗恩民, 沈彬彬, . 多自由度模型法的立体采空区群爆破 动力响应研究[J]. 岩土力学, 2019, 40(6): 2407-2415.
[14] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[15] 史 吏, 王慧萍, 孙宏磊, 潘晓东, . 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!