岩土力学 ›› 2019, Vol. 40 ›› Issue (2): 818-826.doi: 10.16285/j.rsm.2017.1612

• 测试技术 • 上一篇    

离心模型试验中微型土压力盒土压力测定

梁 波1, 2,厉彦君1, 3,凌学鹏1,赵宁雨1, 2,张青松1   

  1. 1. 重庆交通大学 土木工程学院,重庆 400074;2. 重庆交通大学 山区桥梁与隧道工程国家重点实验室培育基地,重庆 400074; 3. 中交武汉港湾工程设计研究院有限公司 海工结构新材料及维护加固技术湖北省重点实验室,湖北 武汉 430040
  • 收稿日期:2017-07-31 出版日期:2019-02-11 发布日期:2019-02-19
  • 通讯作者: 厉彦君,男,1991年生,硕士研究生,主要从事路基支挡结构方面的研究。E-mail:liyanjun2018@qq.com E-mail:liang_laoshi@126.com
  • 作者简介:梁波,男,1964年生,博士,教授,博士生导师,主要从事岩土与地下工程方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金(No.51608081);重庆市建委科技项目(No. 2016-0001)。

Determination of earth pressure by miniature earth pressure cell in centrifugal model test

LIANG Bo1, 2, LI Yan-jun1, 3, LING Xue-peng1, ZHAO Ning-yu1, 2, ZHANG Qing-song1   

  1. 1. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3. Hubei Key Laboratory of Advanced Materials & Reinforcement Technology Research for Marine Environment Structures, CCCC Wuhan Harbour Engineering Design and Research Co., Ltd., Wuhan, Hubei 430040, China
  • Received:2017-07-31 Online:2019-02-11 Published:2019-02-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51608081) and the Science Program of Chongqing Municipal Commission of Urban-Rural Development (2016-0001).

摘要: 土压力作为离心模型试验中重要的测试参数,受土压力盒的性能、离心机数据采集系统稳定性及外部环境等诸多因素的影响,准确地测量土压力较为困难。土压力盒作为土压力测试元件,其性能对土压力测量准确性有直接影响。为获得较为准确的土压力测试数据,结合离心机数据采集系统,选择两种常见的电阻应变式土压力盒。通过标定试验得出两种土压力盒砂标系数均小于出厂标定系数,Ⅰ型偏小64.75%,Ⅱ型偏小18.77%,Ⅱ型土压力盒与出厂数据的重合度比Ⅰ型好;在研究墙高10~30 m类扶壁式挡墙侧向土压力分布的离心模型试验中,与Ⅱ型土压力盒相比,Ⅰ型存在按出厂系数测得数据失真、灵敏度低和稳定性差的缺点。标定试验和离心试验结果表明,接入自行组建的数据采集系统的Ⅱ型土压力盒比接入静态应变数据采集系统的Ⅰ型土压力盒性能更佳。

关键词: 土压力, 微型土压力盒, 标定试验, 离心模型试验, 数据采集系统, 接线方法

Abstract: Earth pressure is an important test parameter in centrifugal model experiment, it can be affected by many factors such as the performance of the earth pressure cell, the stability of the centrifuge data acquisition system and the external environment, so accurate measurement of earth pressure is hard to obtain. As a component of earth pressure measurement, the performance of earth pressure cell can directly affect the accuracy of earth pressure measurement. To get more accurate test data, two common resistance strain type earth pressure cells are selected to test using the centrifuge data acquisition system. The calibration test shows that two cells’ calibration coefficients of sand are smaller than the factory calibration coefficients. The calibration coefficients of sand for the type I are 64.75% lower than the factory calibration coefficients, and that of type II are 18.77% lower. The coincidence degree between type II earth pressure cell and factory data is better than that of type I earth pressure cell. In a centrifugal model test for measuring the lateral earth pressure distribution of counterfort retaining wall with wall height of 10-30 m, type I earth pressure cell has some shortcomings, such as data distortion measured by factory calibration coefficients, poor stability and low sensitivity, compared with the type II cell. The results of calibration test and centrifugal test show that type II cell with self established data acquisition system has better performance than type I with static strain data acquisition system.

Key words: earth pressure, miniature earth pressure cell, calibration test, centrifuge model test, data acquisition system, connection method

中图分类号: 

  • TU 432
[1] 陈建功, 杨扬, 陈彦含, 陈小兵. 考虑抗拉强度的黏性填土挡土墙主动土压力计算[J]. 岩土力学, 2020, 41(6): 1829-1835.
[2] 喻昭晟, 陈晓斌, 张家生, 董亮, ABDOULKADER M S. 粗颗粒土的静止土压力系数非线性分析与计算方法[J]. 岩土力学, 2020, 41(6): 1923-1932.
[3] 史永跃, 王奎华, 董天文, 马显春, 黄永威. 真空负压静力试桩方法关键技术试验研究[J]. 岩土力学, 2020, 41(5): 1699-1708.
[4] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[5] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[6] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[7] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[8] 王钦科, 马建林, 陈文龙, 杨彦鑫, 胡中波, . 上覆土嵌岩扩底桩抗拔承载特性离心 模型试验及计算方法研究[J]. 岩土力学, 2019, 40(9): 3405-3415.
[9] 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486.
[10] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[11] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[12] 汪大海, 贺少辉, 刘夏冰, 张嘉文, 姚文博. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322.
[13] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[14] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[15] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!