岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2215-2223.doi: 10.16285/j.rsm.2019.1495

• 基础理论与实验研究 • 上一篇    下一篇

地震作用下有砟轨道路基动力响应 规律振动台试验

杨长卫1, 2,童心豪2,王栋1,谭信荣1,郭雪岩2,曹礼聪2   

  1. 1. 中铁二院工程集团有限责任公司 科学技术研究院,四川 成都 610031;2. 西南交通大学 土木工程学院,四川 成都 610031
  • 收稿日期:2019-08-29 修回日期:2019-12-30 出版日期:2020-07-10 发布日期:2020-09-10
  • 作者简介:杨长卫,男,1987年生,博士,副研究员,博士生导师,主要从事高速铁路防灾减灾与岩土工程抗震等方面的研究。
  • 基金资助:
    中国铁路总公司科研试验任务(No.SY2016G003);四川省科技计划项目——苗子工程(No.18MZGC0186);中铁二院工程集团有限责任公司科研项目(No. KYY2019145(19-20))

Shaking table test of dynamic response law of subgrade with ballast track under earthquake

YANG Chang-wei1, 2, TONG Xin-hao2, WANG Dong1, TAN Xin-rong1, GUO Xue-yan2, CAO Li-cong2   

  1. 1. Institute of Science and Technology, China Railway Eryuan Engineering Group Co. Ltd., Chengdu, Sichuan 610031, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2019-08-29 Revised:2019-12-30 Online:2020-07-10 Published:2020-09-10
  • Contact: 曹礼聪,男,1990年生,博士研究生,主要从事岩土工程抗震方面的研究。E-mail: caolicong123@126.com E-mail:1209732335@qq.com
  • Supported by:
    This work was supported by the Scientific Research Experiment Task of China Railways Corporation (SY2016G003), Sichuan Science and Technology Program—Seedling Engineering (18MZGC0186) and the Research Project of China Railway Eryuan Engineering Group Co., Ltd. (KYY2019145 (19-20)).

摘要: 以京沪高铁CRH380BL高速动车组为原型,根据相似定律设计完成了1:10比尺的铁路有砟轨道路基振动台模型试验,研究分析了路基的加速度、土压力和位移响应规律。模型尺寸为9.6 m×3.5 m×1.0 m(长×宽×高),包括列车、有砟轨道和路基部分。试验结果证明:随高程增加,水平加速度峰值放大系数逐渐增大,基本上稳定在1.0~2.5,竖向加速度峰值放大系数则呈现先增加后减小的规律,基本稳定在1.5以内。随着输入地震动强度的增大,水平加速度峰值放大系数与高程成正比例关系,非线性关系逐渐增强,竖向加速度峰值放大系数最大值位于距离底部H/3处向2H/3处转移(H为路基高度),在输入峰位加速度(PGA)为0.3g时,水平、竖向加速度峰值放大性均达到最强;随着输入地震动强度的增大,填料中峰值土压力强度逐渐增大,在输入波PGA为0.4g时,土压力强度达到最大,路基中心截面土压力强度随高程增加有先增加后减小的趋势,最大土压力逐渐由距离路基底部H/3向2H/3位置转移;在输入地震波PGA为0.05g时,路基表面、路基底部的土压力强度沿着路基体水平方向呈线性分布,前者离路基越远、土压力越大,后者则是基本不变。在输入地震波PGA为0.15g、0.30g、0.40g时,土压力强度在道砟边缘处最小,在路基中心下土压力强度其次,整体沿着路基体水平方向呈三角形分布;路基坡面中部和顶部的水平位移逐渐增大,前者小于后者,呈近似线性分布,且两者差值逐渐减小。在路基顶部位置,坡面上的位移与路基中心线顶部的位移差值随着输入地震动强度的增大,两者差值逐渐增大,最后区域稳定;地震波在路堤底部时主频集中在5~15 Hz,随着高程增加,路基对30~40 Hz频段有强烈的放大效应,在其余频段的影响不明显。

关键词: 高速铁路, 有砟轨道, 路基, 振动台试验

Abstract: Taking the Beijing-Shanghai high-speed railway CRH380BL EMU as the prototype, a 1:10 ratio railway ballast track subgrade shaking table model test was carried out based on the law of similarity to analyze the acceleration, earth pressure and displacement response of the subgrade. The model is 9.6 m×3.5 m×1.0 m (length×width×height), including the train, ballasted track and subgrade part. Some findings are as follow. As the altitude increases, the amplification factor of peak horizontal acceleration increases gradually, and the value is basically stable between 1.0 and 2.5; while the amplification factor of peak vertical acceleration firstly increases and then decreases, and the value is basically stable within 1.5. As the input ground motion intensity increases, the amplification factor of the peak horizontal acceleration is directly proportional to the elevation, and the non-linear relationship is gradually strengthened. The maximum amplification factor of vertical peak acceleration is shifted from the bottom H/3 to 2H/3 and the peak magnification of horizontal and vertical accelerations reach the maximum when the input seismic wave PGA is 0.3g. As the input ground motion intensity increases, the peak earth pressure intensity in the filler increases gradually. When the input seismic wave PGA reaches 0.4g, the earth pressure intensity reaches the maximum. The earth pressure intensity at the center section of the subgrade tends to increase firstly and then decrease with the increase of elevation, and the maximum earth pressure gradually shifts from H/3 to 2H/3 at the bottom of the subgrade. When the input seismic wave PGA is 0.05g, the earth pressure intensity on the subgrade surface and the subgrade bottom is linearly distributed along the horizontal direction of the subgrade. The farther the former is from the subgrade, the greater the earth pressure, and the latter is basically unchanged. When the input seismic wave PGA is 0.15g, 0.30g and 0.40g, the earth pressure intensity is the smallest at the edge of the ballast, followed by the earth pressure intensity at the center of the subgrade, and the earth pressure presents a triangular distribution along the horizontal direction of the subgrade; the horizontal displacement of the middle and top of the subgrade slope gradually increases, and the former is smaller than the latter, showing an approximately linear distribution and the gradual reduction in the difference between them. At the top of the subgrade, the difference between the displacement on the slope and that on the top of the center line of the subgrade increases gradually with the intensity of the input ground motion intensity, and the difference between both gradually increases, and the stable finally; When the seismic wave is at the bottom of the embankment, the main frequency is concentrated in 5?15 Hz. As the elevation increases, the subgrade has a strong amplification effect on the 30?40 Hz frequency band, but the influence on the remaining frequency bands is not significant.

Key words: high-speed railway, ballast track, subgrade, shaking table test

中图分类号: 

  • TU 443
[1] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[2] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 周江涛, 介少龙, . 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202.
[3] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[4] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[5] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[6] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 马德良, . 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002.
[7] 薛彦瑾, 王起才, 马丽娜, 张戎令, 代金鹏, 王强, . 高速铁路无砟轨道地基泥岩膨胀性分类分级研究[J]. 岩土力学, 2020, 41(9): 3109-3118.
[8] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[9] 商拥辉, 徐林荣, 蔡雨, . 浸水环境下重载铁路改良土路基动力特性研究[J]. 岩土力学, 2020, 41(8): 2739-2745.
[10] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[11] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[12] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[13] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[14] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[15] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[3] 陈 阵,陶龙光,李 涛,李海斌,王综勇. 支护结构作用的箱基沉降计算新方法[J]. , 2009, 30(10): 2978 -2984 .
[4] 张建国,张强勇,杨文东,张 欣. 大岗山水电站坝区初始地应力场反演分析[J]. , 2009, 30(10): 3071 -3078 .
[5] 蒋小伟,万 力,王旭升,武 雄,程惠红. 利用RQD估算岩体不同深度的平均渗透系数和平均变形模量[J]. , 2009, 30(10): 3163 -3167 .
[6] 李少龙,张家发,张 伟,肖 利. 表层土渗透系数空间变异与随机模拟研究[J]. , 2009, 30(10): 3168 -3172 .
[7] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .
[8] 孔位学,芮勇勤,董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. , 2009, 30(11): 3278 -3282 .
[9] 王 威,王水林,汤 华,周平根. 基于三维GIS的滑坡灾害监测预警系统及应用[J]. , 2009, 30(11): 3379 -3385 .
[10] 李鸿博,郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. , 2009, 30(11): 3429 -3434 .