岩土力学 ›› 2020, Vol. 41 ›› Issue (11): 3531-3539.doi: 10.16285/j.rsm.2020.0232

• 基础理论与实验研究 • 上一篇    下一篇

不同冷却条件对高温砂岩物理力学性质的影响

金爱兵1, 2,王树亮1, 2,魏余栋1, 2,孙浩1, 2,韦立昌1, 2   

  1. 1. 北京科技大学 土木与资源工程学院,北京 100083;2. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083
  • 收稿日期:2020-03-05 修回日期:2020-04-13 出版日期:2020-11-11 发布日期:2020-12-24
  • 通讯作者: 孙浩,男,1992年生,博士,讲师,主要从事采矿工艺与理论、岩石力学方面的教学与研究工作。E-mail:sunhao2019@ustb.edu.cn E-mail:jinaibing@ustb.edu.cn
  • 作者简介:金爱兵,男,1974年生,博士,教授,主要从事岩石力学与工程方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No. 51674015);中央高校基本科研业务费专项资金资助项目(No. FRF-TP-19-026A1)

Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone

JIN Ai-bing1, 2, WANG Shu-liang1, 2, WEI Yu-dong1, 2, SUN Hao1, 2, WEI Li-chang1, 2   

  1. 1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-03-05 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674015) and the Fundamental Research Funds for the Central Universities(FRF-TP-19-026A1).

摘要: 岩石工程可能会经受高温环境。岩石高温后冷却方式的不同往往会导致岩石物理力学性质产生重大变化,这对岩石工程的稳定性、渗透性等都会产生重要影响。采用核磁共振(MRI)、电镜扫描(SEM)和单轴压缩试验对100、300、500、600、800 ℃ 5种不同温度砂岩经两种不同冷却方式(自然冷却和水中冷却)后的孔隙率、孔径分布、峰值强度、峰值应变、应力-应变关系以及微观结构变化等进行研究。试验结果表明:自然冷却时,高温砂岩强度并非随温度升高而持续降低,而水冷却会导致砂岩强度持续降低,且降低幅度远超自然冷却;500 ℃可以看作不同冷却方式对砂岩孔隙率影响的临界值,超过500 ℃,水冷却方式会导致孔隙率急剧增长,大孔径(Ф 10 μm)孔隙所占比例也高于自然冷却,因此,高温砂岩工程采用水冷却方式(如隧道着火后用水灭火)要充分考虑由此可能带来渗透危害;SEM测试表明,当温度 500 ℃时,水冷却对裂纹的增宽和扩展产生促进作用;当温度达到800 ℃时,水冷却砂岩孔洞变大,裂隙更加发育,并贯通连成网络,这会导致透水性大幅提高,同时,这也是该温度水冷却导致强度急剧降低的原因之一。

关键词: 砂岩, 热处理, 冷却条件, 孔隙, 核磁共振, 电镜扫描

Abstract: Rock engineering may be subjected to high temperature environment. Different cooling methods of high-temperature rock often lead to significant changes in the physical and mechanical properties of the rock, which will have an important impact on the stability and permeability of rock engineering. Magnetic resonance imaging (MRI), scanning electron microscope (SEM) and uniaxial compression test were used to study the porosity, pore size distribution, peak strength, peak strain, stress-strain relationship and microstructure changes of five temperatures for sandstone samples at 100, 300, 500, 600 and 800℃ under two cooling methods (natural cooling and water cooling). The test results show that: (1) When the rock samples used the natural cooling method, the strength of high-temperature sandstone does not decrease continuously with the increasing of temperature. However, rock samples using water cooling method show continuous decrease of sandstone strength, and the decreasing extent is far greater than that of natural cooling; (2) 500℃ can be considered as the critical value of the influence of different cooling methods on the porosity of sandstone. When the temperature is above 500℃, the water cooling method will cause the rock porosity increase rapidly, and the proportion of pores with large pore diameter (Ф>10 μm) is also higher than that of the natural cooling method. In this consideration, in the field of high-temperature sandstone engineering, the possible seepage hazards should be fully considered when water cooling is used (i.e., fire extinguishing with water after a tunnel is on fire); (3) The SEM test results shows that when the temperature is above 500℃, water cooling promotes the widening and expansion of cracks. When the temperature reaches to 800℃, the pore size of water-cooled sandstone becomes larger, and the fracture is largely developed and connects into a network. This will lead to a substantial increase in water permeability. At the same time, it is one of the reasons for the sharp decrease in rock strength that caused by water cooling at this temperature.

Key words: sandstone, heat treatment, cooling conditions, pore, MRI, SEM

中图分类号: 

  • TU 521
[1] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3): 673-680.
[2] 吕亚茹, 王冲, 黄厚旭, 左殿军, . 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352-360.
[3] 孙文进, 金爱兵, 王树亮, 赵怡晴, 韦立昌, 贾玉春, . 基于DIC的高温砂岩劈裂力学特性研究[J]. 岩土力学, 2021, 42(2): 511-518.
[4] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[5] 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131.
[6] 张峰瑞, 姜谙男, 杨秀荣. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响[J]. 岩土力学, 2020, 41(9): 2901-2912.
[7] 张继文, 穆青翼, 廖红建, 刘芬良, . 考虑土体孔隙比和比表面积影响的未冻 结体积含水率曲线模型[J]. 岩土力学, 2020, 41(9): 2913-2921.
[8] 王涛, 刘斯宏, 宋迎俊, 孔维民, . 基于骨架孔隙比的土石混合料强度变形特性[J]. 岩土力学, 2020, 41(9): 2973-2983.
[9] 房营光, 陈建, 谷任国, 巴凌真, 舒浩恺, . 基于有效比表面积修正的Kozeny-Carman方程 在黏土渗透中的适用性研究[J]. 岩土力学, 2020, 41(8): 2547-2554.
[10] 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646.
[11] 贺文海, 王通. 二维饱和土体动态孔隙率及相关动力响应特性研究[J]. 岩土力学, 2020, 41(8): 2703-2711.
[12] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[13] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[14] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[15] 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜领发,陈善雄,于忠久. 饱和土中任意形状衬砌对稳态压缩波的散射[J]. , 2009, 30(10): 3063 -3070 .
[2] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .
[3] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[4] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[5] 熊田芳,邵生俊,王天明,高志宏. 西安地铁正交地裂缝隧道的模型试验研究[J]. , 2010, 31(1): 179 -186 .
[6] 徐满清,金腊华,黎剑华,徐 斌,陆建飞. 水平简谐荷载作用下层状饱和土体动力响应[J]. , 2009, 30(9): 2633 -2642 .
[7] 汪莹鹤,王保田,安彦勇. 基于CPT资料的土性参数随机场特性研究[J]. , 2009, 30(9): 2753 -2758 .
[8] 张鸿飞,程效军,高 攀,周鑫鑫. 隧道衬砌空洞探地雷达图谱正演模拟研究[J]. , 2009, 30(9): 2810 -2814 .
[9] 翟 伟,宋二祥. 移动荷载下瞬态振动的三维移动坐标有限元分析[J]. , 2009, 30(9): 2830 -2836 .
[10] 徐 超,黄 亮,邢皓枫. 水泥-膨润土泥浆配比对防渗墙渗透性能的影响[J]. , 2010, 31(2): 422 -426 .