岩土力学 ›› 2021, Vol. 42 ›› Issue (7): 1794-1802.doi: 10.16285/j.rsm.2020.1884

• 基础理论与实验研究 • 上一篇    下一篇

复合式整体刚性面板加筋土挡墙 结构行为试验研究

杨广庆1, 2,牛笑笛1, 3,周诗广4,李安洪5,王智猛5,王志杰2   

  1. 1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 0500431; 2. 石家庄铁道大学 土木工程学院,河北 石家庄 050043;3. 石家庄铁道大学 交通运输学院,河北 石家庄 050043;4. 中国铁道学会,北京 100844;5. 中铁二院工程集团有限责任公司,四川 成都 610031
  • 收稿日期:2020-12-18 修回日期:2021-04-09 出版日期:2021-07-12 发布日期:2021-07-15
  • 作者简介:杨广庆,男,1971年生,博士,教授,博士生导师,主要从事土工合成材料加筋、路基工程等方面的研究与教学工作。
  • 基金资助:
    国家自然科学基金资助项目(No. 51378322,No. 51709175);河北省自然科学基金资助项目(No. E2019208159);河北省创新资助项目(No. CXZZBS2018027)

Experimental study on structural behavior of reinforced retaining wall with composite full-height rigid facing

YANG Guang-qing1, 2, NIU Xiao-di1, 3, ZHOU Shi-guang4, LI An-hong5, WANG Zhi-meng5, WANG Zhi-jie2   

  1. 1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 4. China Railway Society, Beijing 100844, China; 5. China Railway Eryuan Engineering Group. Co. Ltd, Chengdu, Sichuan 610031, China
  • Received:2020-12-18 Revised:2021-04-09 Online:2021-07-12 Published:2021-07-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51378322, 51709175), the Natural Science Foundation of Hebei Province (E2019208159) and the Innovation Funding Project in Hebei Province (CXZZBS2018027).

摘要: 复合式整体刚性面板加筋土挡墙是近年研制的新型加筋土挡墙,其面板由预制混凝土板和现浇混凝土组合而成。依托成昆铁路试验段进行此类加筋土挡墙的现场原位试验,并针对其结构特性提出设计原理。施工过程中,在挡墙内部不同部位安装传感器,进行长期监测。分析施工期和工后挡墙基底垂直应力、墙背土压力、土工格栅应变、基底及墙顶沉降、墙面水平位移的演化规律。在面板完成后发生2次地震,监测了地震前后挡墙的变化,研究地震对挡墙结构行为的影响。结果表明:基底垂直应力和墙背土压力随着填筑的增加,逐渐由线性分布演化为非线性分布。土工格栅沿墙高分布的应变峰值平面形状类似“0.3H法(H为墙高)”破裂面。地震后,基底垂直应力、基底及墙顶沉降和墙面水平位移增大,而墙背土压力和土工格栅应变先增大后减小。

关键词: 加筋土挡墙, 复合式整体刚性面板, 结构行为, 地震

Abstract: The reinforced retaining wall with composite full-height rigid facing is a new reinforced retaining wall developed in recent years. The wall facing is composed of precast concrete slab and cast-in-place concrete. Based on the test section of Chengdu-Kunming railway, the in-situ tests of the reinforced retaining wall were carried out, and the corresponding design principle was proposed according to its structural characteristics. During the construction, sensors were installed in different parts of the retaining wall for long-term monitoring. The evolutions of vertical stress on basement, earth pressure on wall back, geogrid strain, settlements of basement and wall top, facing horizontal displacement during and after construction were analyzed. Two earthquakes occurred after the completion of the wall facing. The changes of the retaining wall before and after the earthquake were monitored, and the influence of the earthquakes on the structural behavior of the retaining wall was studied. The results show that: with the increase of filling, the vertical stress on basement and the earth pressure on wall back gradually change from linear distribution to nonlinear distribution. The shape of peak geogrid strain surface along the wall height is similar to the “0.3H (wall height) method” fracture surface. After the earthquake, the vertical stress of basement, settlements of basement and wall top, facing horizontal displacement increase, while the earth pressure on wall back and geogrid strain increase firstly and then decrease.

Key words: reinforced retaining wall, composite full-height rigid facing, structural behavior, earthquake

中图分类号: 

  • TU 476
[1] 陈世杰, 肖明, 王小威, 陈俊涛, . 陡倾角断层下地下洞室地震破坏特性数值分析[J]. 岩土力学, 2021, 42(9): 2600-2610.
[2] 周永强, 盛谦, 李娜娜, 付晓东, . 非一致性地震动作用下某长大隧洞动力响应的 时空效应初步研究[J]. 岩土力学, 2021, 42(8): 2287-2297.
[3] 刘中宪, 刘英, 孟思博, 黄磊, . 基于间接边界元法的近断层沉积谷地地震动模拟[J]. 岩土力学, 2021, 42(4): 1141-1155.
[4] 李志浩, 肖世国. 不同运动模式的悬臂式挡墙地震永久位移算法[J]. 岩土力学, 2021, 42(3): 723-734.
[5] 杨军, 孙晓立, 卞德存, 邵继喜, . 基于平行地震波法探测桩基缺陷的试验研究[J]. 岩土力学, 2021, 42(3): 874-881.
[6] 高启栋, 卢文波, 冷振东, 王亚琼, 周海孝, 张士朝, . 考虑爆源特征的岩石爆破诱发地震波的 波型与组分分析[J]. 岩土力学, 2021, 42(10): 2830-2844.
[7] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[8] 牛笑笛, 杨广庆, 王贺, 丁硕, 冯帆, . 不同面板形式加筋土挡墙结构 特性现场试验研究[J]. 岩土力学, 2021, 42(1): 245-254.
[9] 李英俊, 夏元友, 王智德. 地震作用下土钉支护边坡震后位移分析[J]. 岩土力学, 2020, 41(9): 3013-3021.
[10] 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065.
[11] 黄睿, 汤金焕, . RT模式下地震非极限主动土压力的拟动力分析[J]. 岩土力学, 2020, 41(8): 2564-2572.
[12] 李见飞, 苏杨, 孙志彬, 赵晨, . 基于Newmark滑块原理的抗滑桩加固 三维土坡的地震位移分析方法[J]. 岩土力学, 2020, 41(8): 2785-2795.
[13] 杜文杰, 盛谦, 付晓东, 汤华, 陈贺, 杜宇翔, 周永强, . 地震作用下岩羊村滑坡稳定性与失稳机制研究[J]. 岩土力学, 2020, 41(7): 2461-2469.
[14] 肖世国, 刘航, 于昕左. 水平柔性拉筋式重力墙−坡体地震整体 稳定性分析方法[J]. 岩土力学, 2020, 41(6): 1836-1844.
[15] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[2] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[3] 黄润秋,徐德敏. 岩石(体)渗透性测试的体变量法研究[J]. , 2009, 30(10): 2961 -2964 .
[4] 徐远杰,潘家军,刘祖德. 混凝土面板堆石坝的一种坝坡修整算法[J]. , 2009, 30(10): 3139 -3144 .
[5] 张召千,徐明德,刘泉声. 煤巷围岩稳定性加权平均评价方法研究[J]. , 2009, 30(11): 3464 -3468 .
[6] 王 飞,王 媛,倪小东. 渗流场随机性的随机有限元分析[J]. , 2009, 30(11): 3539 -3542 .
[7] 杨 强,刘耀儒,冷旷代,吕庆超,杨春和. 能源储备地下库群稳定性与连锁破坏分析[J]. , 2009, 30(12): 3553 -3561 .
[8] 杨建平,陈卫忠,田洪铭,于洪丹. 应力-温度对低渗透介质渗透率影响研究[J]. , 2009, 30(12): 3587 -3594 .
[9] 董金玉,杨继红,伍法权,王 东,杨国香. 三峡库区软硬互层近水平地层高切坡崩塌研究[J]. , 2010, 31(1): 151 -157 .
[10] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .