岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2763-2772.doi: 10.16285/j.rsm.2021.0459

• 基础理论与实验研究 • 上一篇    下一篇

干湿循环条件下黏性土干缩裂隙演化特征

刘俊东,唐朝生,曾浩,施斌   

  1. 南京大学 地球科学与工程学院,江苏 南京 210023
  • 收稿日期:2021-04-01 修回日期:2021-06-29 出版日期:2021-10-11 发布日期:2021-10-20
  • 通讯作者: 唐朝生,男,1980年生,博士,教授,主要从事环境岩土工程和工程地质方面的教学和研究工作。E-mail: tangchaosheng@nju.edu.cn E-mail:MG1829078@smail.nju.edu.cn
  • 作者简介:刘俊东,男,1996年生,硕士,主要从事土体龟裂网络几何形态规律分析与模拟相关的研究工作。
  • 基金资助:
    国家杰出青年科学基金(No. 41925012);国家自然科学基金(No. 41772280,No. 41902271);江苏省自然科学基金(No. BK20211087);国家重点研发计划(No. 2019YFC1509902);中央高校基本科研业务费专项资金(2020-2022)

Evolution of desiccation cracking behavior of clays under drying-wetting cycles

LIU Jun-dong, TANG Chao-sheng, ZENG Hao, SHI Bin   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
  • Received:2021-04-01 Revised:2021-06-29 Online:2021-10-11 Published:2021-10-20
  • Supported by:
    This work was supported by the National Science Foundation for Outstanding Young Scholars (41925012), the National Natural Science Foundation of China (41772280, 41902271), the Natural Science Foundation of Jiangsu Province (BK20211087), the National Key Research and Development Program of China (2019YFC1509902) and the Fundamental Research Funds for the Central Universities (2020-2022).

摘要: 自然界中土体通常会经历多次干湿循环作用,干湿循环是影响土体工程性质的重要因素。为了研究黏性土干缩裂隙网络在干湿循环作用下的演化特征,在室内对尺度为60 cm×40 cm×1.5 cm的试样开展了5次干湿循环试验,实时监测了试样表面裂隙网络在干、湿过程中的变化,并利用数字图像处理软件定量分析了表面裂隙率、裂隙长度、宽度、交角等几何形态参数。结果表明:(1)干湿循环作用对土体干缩裂隙发育特征有重要影响,第1次干燥过程中裂隙发育存在明显的级序特征,但该现象在后续干燥轮次中消失;(2)裂隙在湿化过程中发生崩解愈合,并沿裂隙位置形成“浅坎”,干湿循环后裂隙基本在原位置产生,但裂隙发育方向在每次干燥过程中不尽相同;(3)干湿循环作用会导致裂隙边缘变得粗糙,并在土样中诱发更多的微小裂隙;(4)干湿循环作用会导致试样起裂时间变早,裂隙发育速度变快,裂隙总长度增加,裂隙平均宽度减小,但裂隙率变化不明显;(5)裂隙网络的交点形态随干湿循环次数的增加逐渐由T形转变为Y形,裂隙之间的交角由90°逐渐演变为120°。

关键词: 干缩开裂, 干湿循环, 裂隙网络形态, 定量分析, 裂隙愈合, 裂隙交角

Abstract: Soils usually experience multiple drying-wetting cycles in nature, which can have a significant impact on the engineering properties of soils. Laboratory tests were conducted to investigate the effect of drying-wetting cycles on the initiation and evolution of cracks in clay layers. A clay specimen was prepared and was subsequently subjected to five drying-wetting cycles. The evolution of surface cracks during the drying-wetting cycles were monitored. The effect of drying-wetting cycles on the geometric characteristics of crack patterns was analyzed by the digital image processing software, and four geometric parameters, including the surface crack ratio, the total crack length, the average crack width and the intersection angle, were selected for the quantitatively analysis. The results show that: i) The desiccation and cracking behavior can be significantly affected by the applied drying-wetting cycles. The cracks develop sequentially during the first drying process and the crack pattern exhibits typical hierarchical characteristics, while this phenomenon disappears in the subsequent drying-wetting cycles. ii) The edge of the cracks can break down and heal into "shallow ridges" during the wetting path. After the drying-wetting cycle most cracks occur at the original position, but the direction of cracking is different during different drying processes. iii) The drying-wetting cycles may cause the edges of the cracks to become rough and induce more tiny cracks in the soil specimen. iv) Drying-wetting cycles can advance the occurrence of the cracks in the specimen, increase the total length of cracks, decrease the average width of the cracks, but induce limited changes in the crack ratio. v) With the increase of drying-wetting cycles, the pattern of the intersections of the crack network gradually change from the T-junction to the Y-junction, while the intersection angle between cracks gradually changes from 90° to 120°.

Key words: desiccation cracking, drying-wetting cycle, crack network pattern, quantitative analysis, crack healing, crack intersection angle

中图分类号: 

  • TU 442
[1] 许健, 武智鹏, 陈辉, . 干湿循环效应下玄武岩纤维加筋黄土 三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36.
[2] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
[3] 汪时机, 骆赵刚, 李贤, 文桃. 考虑局部含水率效应的浅层土体开裂 过程与力学机制分析[J]. 岩土力学, 2021, 42(5): 1395-1403.
[4] 郝延周, 王铁行, 程磊, 金鑫, . 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986.
[5] 胡智, 艾聘博, 李志超, 马强, 李丽华, . 干湿循环−动荷载贯序耦合作用下压实粉质 黏土电阻率演化规律[J]. 岩土力学, 2021, 42(10): 2722-2732.
[6] 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885.
[7] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[8] 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40.
[9] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[10] 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970.
[11] 江强强, 刘路路, 焦玉勇, 王 浩, . 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012.
[12] 谢凯楠, 姜德义, 孙中光, 宋中强, 王静怡, 杨 涛, 蒋 翔, . 基于低场核磁共振的干湿循环对泥质砂岩 微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653-659.
[13] 蔡正银, 朱 洵, 黄英豪, 张 晨. 冻融过程对膨胀土裂隙演化特征的影响[J]. 岩土力学, 2019, 40(12): 4555-4563.
[14] 张善凯, 冷先伦, 盛谦, 李彪, 周永强, . 卢氏膨胀岩在干湿循环作用下的胀缩特性研究[J]. 岩土力学, 2019, 40(11): 4279-4288.
[15] 胡东旭,李 贤,周超云,薛 乐,刘洪伏,汪时机. 膨胀土干湿循环胀缩裂隙的定量分析[J]. , 2018, 39(S1): 318-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵春彦,周顺华,袁建议. 基于一维和三维固结挤土桩沉降时效计算分析[J]. , 2009, 30(9): 2629 -2632 .
[2] 杨 涛,周德培,马惠民,张忠平. 滑坡稳定性分析的点安全系数法[J]. , 2010, 31(3): 971 -975 .
[3] 李文培,王明洋,范鹏贤. 基于间断位移场的隧道围岩承载能力研究[J]. , 2010, 31(8): 2441 -2447 .
[4] 张菊连,沈明荣. 基于逐步判别分析的砂土液化预测研究[J]. , 2010, 31(S1): 298 -302 .
[5] 彭明祥. 挡土墙主动土压力的库仑统一解[J]. , 2009, 30(2): 379 -386 .
[6] 羊 晔,刘松玉,邓永锋. 加筋路基处治不均匀沉降模型试验研究[J]. , 2009, 30(3): 703 -706 .
[7] 郑 刚,颜志雄,雷华阳,王晟堂. 天津市区第一海相层粉质黏土卸荷路径下强度特性的试验研究[J]. , 2009, 30(5): 1201 -1208 .
[8] 戴洪军,刘欣良,任治军,韦 华. 圆形煤场中桩-网复合地基原体试验研究[J]. , 2011, 32(2): 487 -494 .
[9] 谢永健,王怀忠,朱合华. 软黏土中PHC管桩打入过程中土塞效应研究[J]. , 2009, 30(6): 1671 -1675 .
[10] 姜清辉,邓书申,周创兵. 有自由面渗流分析的三维数值流形方法[J]. , 2011, 32(3): 879 -884 .