岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 626-639.doi: 10.16285/j.rsm.2019.0719

• 数值分析 • 上一篇    下一篇

软弱泥质砂岩地层中输水隧洞稳定性研究

Muhammad Usman Azhar1, 2,周辉1, 2,杨凡杰1, 2,高阳1, 2,朱勇1, 2, 路新景3,房后国3,耿轶君3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学和工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 黄河工程咨询有限公司,河南 郑州 450003
  • 收稿日期:2019-05-26 修回日期:2022-09-18 出版日期:2022-10-10 发布日期:2022-10-10
  • 作者简介:Muhammad Usman Azhar,男,1985年生,博士,主要从事深部隧道支护设计和数值分析等方面的研究。
  • 基金资助:
    国家重点研发计划(No.2019YFC0605103);国家自然科学基金(No.U1865203);湖北省自然科学基金创新团队(No.2018CFA013)。

Stability of a water diversion tunnel in weak sandstone stratum

Muhammad Usman Azhar1, 2, ZHOU Hui1, 2, YANG Fan-jie1, 2, GAO Yang1, 2, ZHU Yong1, 2, LU Xin-jing3, FANG Hou-guo3, GENG Yi-jun3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
  • Received:2019-05-26 Revised:2022-09-18 Online:2022-10-10 Published:2022-10-10
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2019YFC0605103), the National Natural Science Foundation of China (U1865203) and the Innovation Group of Natural Science Foundation of Hubei Province (2018CFA013).

摘要: 泥质砂岩属于黏土岩,具有典型的遇水软化特征。在泥质砂岩富水地层中进行隧道开挖是地下工程的一个挑战性问题。研究了围岩软化与未软化条件下泥质砂岩地层中输水隧洞的稳定性和支护时间。首先,介绍了泥质砂岩遇水软化的力学试验结果;然后,采用基于Hoek-Brown强度准则的岩体参数评价方法,评估泥质砂岩在围岩软化与未软化条件下的力学参数;再后,以兰州水源地引水隧洞为依托工程,采用数值模拟方法对泥质砂岩隧洞软化与未软化工况的围岩稳定性进行了计算分析,得出泥质砂岩遇水软化对隧洞安全性存在显著影响;最后,采用位移收敛法,研究了泥质砂岩软化与未软化工况中,保障隧洞施工安全的合理支护时机。研究表明,泥质砂岩未软化工况中,可考虑隧道围岩初期支护在距掌子面4~5 m位置实施;而在泥质砂岩遇水软化工况中,初期支护建议在掌子面开挖后立刻支护。研究成果可为泥质砂岩地层隧洞的安全施工提供依据。

关键词: 泥质砂岩, 遇水软化, 隧洞稳定性, 数值分析, 收敛约束法, 支护时机

Abstract: Argillaceous sandstone shows the typical characteristics of water-weakening due to the high content of clays. Tunnelling in argillaceous sandstone stratum with rich (trapped) water is a challenging issue for underground engineering. This study examined the stability and supporting time for a water conveyance tunnel in the argillaceous sandstone stratum with weakened and un-weakened conditions. Firstly, the water-weakened mechanical test results of argillaceous sandstone were presented. Then, to evaluate the mechanical parameters of the argillaceous sandstone in both water-weakening and un-weakening conditions, the rock mass evaluation method on basis of the Hoek-Brown strength criterion was adopted. Next, Lanzhou water source tunnel project was taken as the research object, and the stability of surrounding rock mass for the tunnel in argillaceous sandstone in both conditions was analyzed by a numerical modelling method. The researches indicate that the water-weakening of argillaceous sandstone significantly influenced tunnel safety. Finally, the convergence confinement approach was utilized to analyze the necessary supporting time to ensure tunnel safety during construction. The results indicate that if the argillaceous sandstone does not weaken, early support measures for the tunnel surrounding rock mass can be considered at the distance of 4 to 5 meters away from the excavation face. However, in the case of argillaceous sandstone water-weakening, early support measures should be employed immediately when the tunnel face is excavated. The research findings can provide the foundation for the safe construction of tunnels in a weak surrounding rock mass with water-weakened conditions.

Key words: argillaceous sandstone, water-weakening, tunnel stability, numerical analysis, the convergence confinement method, support timing

中图分类号: 

  • TU457
[1] 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398.
[2] 李双龙, 魏丽敏, 冯胜洋, 何群, 张开鑫, . 基于扩展Koppejan模型的被动桩−软土 时效性相互作用研究[J]. 岩土力学, 2022, 43(9): 2602-2614.
[3] 乔亚飞, 唐洁, 顾贇, 丁文其, . 超深地连墙槽壁侧压力演变模式 及其施工扰动分析[J]. 岩土力学, 2022, 43(4): 1083-1092.
[4] 汪嘉钰, 刘润, 姬永红, 杨旭, 陈广思, 王晓磊, . 筒型基础水平向和抗倾承载力的极限分析上限解[J]. 岩土力学, 2022, 43(3): 777-788.
[5] 蔡灿, 张沛, 孙明光, 杨迎新, 谢松, 蒲治成, 杨显鹏, 高超, 谭政博, . 油气钻井中的分离式冲击−切削复合破岩机制研究[J]. 岩土力学, 2021, 42(9): 2535-2544.
[6] 张建聪, 江权, 郝宪杰, 丰光亮, 李邵军, 汪志林, 樊启祥, . 高应力下柱状节理玄武岩应力−结 构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568.
[7] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[8] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[9] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[10] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[11] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[12] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[13] 谢凯楠, 姜德义, 孙中光, 宋中强, 王静怡, 杨 涛, 蒋 翔, . 基于低场核磁共振的干湿循环对泥质砂岩 微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653-659.
[14] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[15] 陈子全,何 川,董唯杰,马杲宇,潘旭勇,裴成元,. 北疆侏罗系与白垩系泥质砂岩物理力学特性对比分析及其能量损伤演化机制研究[J]. , 2018, 39(8): 2873-2885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .