岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1671-1683.doi: 10.16285/j.rsm.2022.1109
杨奇1, 2,王晓雅1,聂如松1, 2,陈琛1,陈缘正1,徐方1, 2
YANG Qi1, 2, WANG Xiao-ya1, NIE Ru-song1, 2, CHEN Chen1, CHEN Yuan-zheng1, XU Fang1, 2
摘要: 长期列车荷载作用会引起砂土地基和填料的强度衰减、累积沉降过大甚至沉陷等病害问题,严重者危及行车安全。揭示病害机制需探明间歇荷载作用下饱和砂土累积塑性变形及孔压特性。对此开展了不同围压、动力幅值下连续加载与间歇加载的动三轴试验,试验结果表明:(1)饱和砂土累积塑性变形−振次曲线呈现锯齿状发展。间歇效应导致卸荷回弹,并显著降低了后加载阶段砂土累积塑性变形,可使连续加载条件下的破坏型“转换”为稳定型。(2)对于塑性安定和塑性蠕变型,孔压−振次关系曲线呈台阶状,第1加载阶段的孔压随振次迅速累积增长,而间歇阶段排水,孔压消散接近或降至0,土体趋密实;在后续加载阶段,孔压累积幅值大幅降低。对于增量破坏型,孔压在第1加载阶段快速增大,试样破坏。(3)建立了表征间歇加载下砂土累积塑性应变两阶段发展特征的预测模型,预测效果良好。(4)间歇效应提高了砂土抵抗塑性变形的能力,连续加载会高估砂土累积塑性应变和低估其动强度。该研究结果对深刻认识间歇循环荷载下饱和砂土的累积变形特性和机制具有重要参考价值。
中图分类号:
[1] | 李雪, 王滢, 高盟, 陈青生, 彭晓东, . 地震荷载作用下南海非饱和钙质砂动力特性研究[J]. 岩土力学, 2023, 44(3): 821-833. |
[2] | 闫志晓, 李雨润, 王东升, 王永志, . 覆水砂土场地中桥梁群桩基础地震响应离心试验研究[J]. 岩土力学, 2023, 44(3): 861-872. |
[3] | 陈平山, 吕卫清, 梁小丛, 周红星, 王婧, 马佳钧, . 含细粒珊瑚土抗液化特性试验研究[J]. 岩土力学, 2023, 44(2): 337-344. |
[4] | 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549. |
[5] | 王瑞, 泮晓华, 唐朝生, 吕超, 王殿龙, 董志浩, 施斌. MICP联合纤维加筋改性钙质砂的动力特性研究[J]. 岩土力学, 2022, 43(10): 2643-2654. |
[6] | 苏新斌, 廖晨聪, 刘世奥, 张璐璐, . 基于预制滑动面的饱和黏土−结构物界面强度特性 三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860. |
[7] | 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524. |
[8] | 董青, 周正华, 苏杰, 李小军, 郝冰, . 基于对数动骨架的可考虑液化大变形本构[J]. 岩土力学, 2021, 42(7): 1903-1910. |
[9] | 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970. |
[10] | 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055. |
[11] | 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077. |
[12] | 崔蓬勃, 朱永全, 刘勇, 朱正国, 潘英东, . 非饱和砂土隧道土拱效应模型试验 及颗粒流数值模拟研究[J]. 岩土力学, 2021, 42(12): 3451-3466. |
[13] | 王家全, 畅振超, 唐毅, 唐滢, . 循环荷载下加筋砾性土填料的动三轴试验分析[J]. 岩土力学, 2020, 41(9): 2851-2860. |
[14] | 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251. |
[15] | 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260. |
|