岩土力学 ›› 2021, Vol. 42 ›› Issue (4): 1003-1011.doi: 10.16285/j.rsm.2020.1373

• 基础理论与实验研究 • 上一篇    下一篇

悬索桥隧道式锚碇夹持效应的试验研究

王东英1, 2, 3, 4,尹小涛3,杨光华1, 2, 4   

  1. 1. 广东省水利水电科学研究院,广东 广州 510610;2. 广东省岩土工程技术研究中心,广东 广州 510640;3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉430071;4. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2020-09-13 修回日期:2020-10-19 出版日期:2021-04-12 发布日期:2021-04-25
  • 通讯作者: 尹小涛,男,1974年生,博士,副研究员,主要从事悬索桥锚碇承载力方面的研究工作。E-mail: xtyin@whrsm.ac.cn E-mail: wangdongying910309@163.com
  • 作者简介:王东英,女,1991年生,博士,工程师,主要从事工程稳定性分析方面的研究工作
  • 基金资助:
    国家自然科学基金(No. 51778152,No. 51778609);中国博士后科学基金(No. 2019M662827)。

Experimental study of the clamping effect of the suspension bridge tunnel-type anchorage

WANG Dong-ying1, 2, 3, 4, YIN Xiao-tao3, YANG Guang-hua1, 2, 4   

  1. 1. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, Guangdong 510610, China; 2. Guangdong Technical Research Center of Geotechnical Engineering, Guangzhou, Guangdong 510640, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 4. School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, Guangdong 510640, China
  • Received:2020-09-13 Revised:2020-10-19 Online:2021-04-12 Published:2021-04-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51778152, 51778609) and the China Postdoctoral Science Foundation (2019M662827).

摘要: 隧道式锚碇的夹持效应机制及其破坏形态的研究尚不充分,不利于隧道式锚碇设计理论的优化。通过开展锚碇的二维室内模型试验,分析了锚碇和岩体联合承载的过程、机制及锚碇自岩体内拔出时的破坏形态,并针对锚碇的楔形角和埋深等几何要素对锚碇的承载力和破坏特征的影响做了简单分析,在一定程度上揭示了隧道式锚碇夹持效应的本质。所得结论主要有:(1)锚碇加速非线性移动挤压土体产生附加应力,激发夹持效应发挥抗力作用,调动周围岩土体联合承载。(2)隧道式锚碇的承载力由自重效应和夹持效应组成,自重效应不足以平衡主缆荷载时,夹持效应才发挥作用。从经济和安全角度,应对锚碇的体型进行合理设计,使得夹持效应得到有效发挥。(3)锚碇的楔形角影响锚碇的极限承载力,设计时应通过优化分析确定优势角。(4)锚碇的埋深越大,承载力越大,两者基本成线性关系。在实际工程中应把握施工难易性、经济性及承载力之间的关系综合确定埋深。(5)锚碇裂纹的产生和发展与锚碇及岩体的应力位移响应具有相关性。锚碇与土体相对静止时无裂纹产生,破坏形态基本形成的时间与锚碇加速非线性位移阶段相对应。

关键词: 隧道式锚碇, 自重效应, 夹持效应, 承载力, 破坏形态

Abstract: Studies on the clamping effect and failure mode of the tunnel-type anchorage are still insufficient, leading to many difficulties in the optimization of design philosophy of the tunnel-type anchorage. In this work, the bearing characteristics, bearing mechanics and the failure mode of the tunnel-type anchorage were analyzed through 2D laboratory model tests. Besides, the influences of wedged angle and burial depth on the bearing capacity and failure mode were studied as well. This work reveals the essence of the clamping effect of the suspension bridge tunnel-type anchorage to some extent. Main conclusions are given as follow: First, additional stress is generated when the anchorage moves with a crescent accelerated velocity and squeezes the surrounding rock. The clamping effect results in resistance and the surrounding rock and soil start to bear the main cable load jointly. Second, the bearing capacity of the tunnel-type anchorage is contributed by gravity and the clamping effect. The clamping effect will play a role only when the gravity effect fails to balance the main cable load. From the view of economy and security, it is necessary to rationally design the size of the anchorage to ensure the role of the clamping effect. Third, the bearing capacity of the tunnel-type anchorage is also influenced by the wedged angle and it is necessary to optimize the wedged angle to obtain the maximum bearing capacity. Fourth, the bearing capacity of the tunnel-type anchorage increases linearly with the burial depth. Thus, in the actual project, the burial depth should be determined according to the bearing capacity, the construction difficulty, as well as economy. Finally, the initiation and propagation of the cracks is associated with the response of the stress and displacement. There is no crack initiation when the anchorage and surrounding rock are relatively static. The formation time of the failure mode corresponds to the nonlinear displacement stage of anchorage acceleration.

Key words: tunnel-type anchorage, gravity effect, clamping effect, bearing capacity, failure mode

中图分类号: 

  • TU 457
[1] 刘志鹏, 孔纲强, 文磊, 王志华, 秦红玉, . 砂土地基中倾斜螺旋桩群桩上拔与水平 承载特性模型试验[J]. 岩土力学, 2021, 42(7): 1944-1950.
[2] 晏青, 赵均海, 张常光. 基于统一强度理论的临坡加筋地基极限承载力新解[J]. 岩土力学, 2021, 42(6): 1587-1600.
[3] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[4] 张玉, 李大勇, 梁昊, 张雨坤, . 风电空心锥形基础水平承载特性 及土压力分布规律模型试验研究[J]. 岩土力学, 2021, 42(5): 1404-1412.
[5] 李青松, 文磊, 孔纲强, 高洪梅, 申志福, . 基于孔扩张理论的螺旋桩抗拔承载力计算分析[J]. 岩土力学, 2021, 42(4): 1088-1094.
[6] 杨坚, 简文彬, 黄炜, 黄聪惠, 罗金妹, 李先忠, . 注浆支盘式锚杆拉拔试验及极限承载力计算[J]. 岩土力学, 2021, 42(4): 1126-1132.
[7] 万志辉, 戴国亮, 龚维明, 高鲁超, 徐艺飞, . 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418.
[8] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[9] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
[10] 刘润, 曹添铭, 陈广思, 张海洋, 李成凤. 插拔桩靴对临近桩靴承载力的影响研究[J]. 岩土力学, 2020, 41(9): 2943-2952.
[11] 胡伟, 孟建伟, 姚琛, 雷勇, . 浅埋平板圆锚竖向拉拔极限承载力计算方法[J]. 岩土力学, 2020, 41(9): 3049-3055.
[12] 万志辉, 戴国亮, 高鲁超, 龚维明, . 大直径后压浆灌注桩承载力和沉降的 实用计算方法研究[J]. 岩土力学, 2020, 41(8): 2746-2755.
[13] 周强, 黎康平, 段亚辉, 曹子君, 李典庆, . 基于广义可靠指标相对安全率的地基承载力 安全判据研究[J]. 岩土力学, 2020, 41(6): 2052-2062.
[14] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
[15] 杨学祥, 焦园发, 杨语驿, . 充气膨胀控制锚杆的研制与试验[J]. 岩土力学, 2020, 41(3): 869-876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .