岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 205-213.doi: 10.16285/j.rsm.2021.0092

• 基础理论与实验研究 • 上一篇    下一篇

混凝土含水裂隙中爆炸压力传播的模型试验研究

李桐1, 2,陈明1, 2,叶志伟1, 2,卢文波1, 2,魏东1, 2,郑祥3   

  1. 1. 武汉大学 水资源与水电工程科学国家重点试验室,湖北 武汉 430072;2. 武汉大学 水工岩石力学教育部重点试验室,湖北 武汉 430072; 3. 中国水利水电第七工程局有限公司 第一分局,四川 眉山 620010
  • 收稿日期:2021-01-13 修回日期:2021-04-15 出版日期:2022-10-10 发布日期:2022-10-03
  • 通讯作者: 陈明,男,1977年生,博士,教授,主要从事水利水电工程施工技术及岩石动力学方面的教学与研究工作。E-mail: whuchm@whu.edu.cn E-mail:whultong@whu.edu.cn
  • 作者简介:李桐,男,1993年生,博士研究生,主要从事水利水电工程施工技术及岩石动力学方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51979205,No.51939008)。

Model experimental study of explosion pressure propagation in concrete water-bearing crack

LI Tong1, 2, CHEN Ming1, 2, YE Zhi-wei1, 2, LU Wen-bo1, 2, WEI Dong1, 2, ZHENG Xiang3   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China; 3. Branch No.1 of Sinohydro Bureau No.7 Co., Ltd., Meishan, Sichuan 620010, China
  • Received:2021-01-13 Revised:2021-04-15 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51979205, 51939008).

摘要:

爆炸作用下含水裂隙中水压力的分布及传播特征对分析含水裂隙岩体初始裂纹扩展机制具有重要意义。通过含水裂隙的混凝土室内爆炸试验,测量了爆炸时含水裂隙中的水压力,分析了含水裂隙中水压力的荷载特性及传播特征,并研究了裂隙张开宽度及爆炸药量对水压力荷载的影响。试验研究结果表明:爆炸作用下含水裂隙中水压力时程分布呈多峰波动分布,水压力来源包括爆源通过水介质直接传递的荷载及通过混凝土间接传递的荷载,且在不同裂隙长度,荷载峰值主要来源不同;相同装药条件下,含水裂隙中水压力随距爆源距离增大而迅速衰减,裂隙中同一位置水压力大小与裂隙张开宽度呈负相关;混凝土室内爆炸试验含水裂隙中水击波所带能量频谱主要集中在7.8~62.5 kHz,是一种高频信号。随距爆源距离的增加,能量分布向低频集中;水击波频带能量分布特征受爆炸药量及裂隙张开宽度的影响。当量为4.5 g TNT(三硝基苯)乳化炸药装药相比 8.1 g TNT乳化炸药装药爆炸时水击波高频信息更丰富;相同爆炸药量时,随混凝土中含水裂隙张开宽度的增加,水击波频带能量分布峰值呈现向中间频带移动的趋势。

关键词: 爆炸试验, 含水裂隙, 水压力, 传播特征, 张开度, 能量分布

Abstract:

The distribution and propagation characteristics of water pressure in water-bearing crack under blasting load are of great significance to the study of the initial crack propagation mechanism in water-bearing fractured rock mass. Through the laboratory blasting experimental in concrete with water-bearing crack, the water pressure in water-bearing crack was measured during blasting, and its loading characteristics and propagation law were analyzed, while the effects of crack aperture and blasting charge quantity on water pressure were studied. The experimental results show that the time-history distribution of water pressure in water-bearing crack presents multi-peak fluctuation distribution. And the sources of water pressure include the blasting load directly transmitted through the water and indirectly transmitted through the concrete; the main source of load is different for different crack lengths. Under the same charging condition, the water pressure in water-bearing crack attenuates rapidly with increase of distance from the detonation source, and the water pressure at the same position in crack is approximately inversely proportional to the crack aperture. The energy spectrum of water hammer wave in water-bearing cracks is mainly concentrated in 7.8−62.5 kHz during laboratory explosion test of concrete with water-bearing crack, which is a high frequency signal. Meanwhile, the energy distribution trends to concentrate in the low frequency range with increase of distance from the detonation source. The energy distribution characteristics of water hammer wave are affected by charge and crack aperture, and the explosion induced by emulsion explosive of the equivalent 4.5 gTNT charge can generate water hammer wave with more abundant high frequency information in comparison with the equivalent 8.1 gTNT emulsion explosive charge. For the same blasting charge quantity, the peak energy distribution of the water hammer wave frequency band tends to move to the middle band with the increase of crack aperture.

Key words: explosion experiment, water-bearing crack, water pressure, propagation characteristic, aperture, energy distribution

中图分类号: 

  • O 383.1
[1] 张雷, 吕延栋, 王炳辉, 金丹丹, 竺明星, 方晨, . 絮凝−真空−电渗联合加固滩涂软土的模型试验研究[J]. 岩土力学, 2022, 43(9): 2383-2390.
[2] 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549.
[3] 杜宇, 刘松玉, 祝刘文, 邹海峰, 蔡国军, . 基于孔压静力触探试验的水运工程土分类方法研究[J]. 岩土力学, 2022, 43(5): 1353-1363.
[4] 苏新斌, 廖晨聪, 刘世奥, 张璐璐, . 基于预制滑动面的饱和黏土−结构物界面强度特性 三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860.
[5] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524.
[6] 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.
[7] 张峰瑞, 姜谙男, 杨秀荣. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响[J]. 岩土力学, 2020, 41(9): 2901-2912.
[8] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[9] 白雪元, 王学滨, 舒芹, . 静水压力下内摩擦角对圆形洞室围岩局部破裂 影响的连续-非连续模拟[J]. 岩土力学, 2020, 41(7): 2485-2493.
[10] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[11] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[12] 乔亚飞, 逯兴邦, 黄俊, 丁文其, . 欠固结地层静止侧压力简化计算方法[J]. 岩土力学, 2020, 41(11): 3722-3729.
[13] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[14] 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77.
[15] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .
[4] 朱珍德,李道伟,蒋志坚,刘金辉,杨永杰. 温度循环作用下深埋隧洞围岩细观结构的定量描述[J]. , 2009, 30(11): 3237 -3241 .
[5] 江洎洧,项 伟,唐辉明,曾 斌,黄 玲. 极限蓄水位下洞坪水库大沟湾滑坡稳定性预测[J]. , 2010, 31(3): 805 -810 .
[6] 陈若曦,朱 斌,陈云敏,陈仁朋. 基于主应力轴旋转理论的修正 Terzaghi松动土压力[J]. , 2010, 31(5): 1402 -1406 .
[7] 胡建华,周科平,罗先伟,邓红卫. 顶板诱导崩落爆破效果的全景探测与评价[J]. , 2010, 31(5): 1529 -1533 .
[8] 徐学锋,窦林名,刘 军,崔晓晖,张银亮,姚喜渊. 煤矿巷道底板冲击矿压发生的原因及控制研究[J]. , 2010, 31(6): 1977 -1982 .
[9] 彭从文,朱向荣,王金昌,许成祥. 基于Plesha本构的岩石节理多层结构模型研究[J]. , 2010, 31(7): 2059 -2071 .
[10] 谈云志,孔令伟,郭爱国,万 智. 压实红黏土水分传输的毛细效应与数值模拟[J]. , 2010, 31(7): 2289 -2294 .