岩土力学 ›› 2022, Vol. 43 ›› Issue (8): 2263-2276.doi: 10.16285/j.rsm.2021.1826

• 岩土工程研究 • 上一篇    下一篇

考虑条间剪力的刚性挡墙静力与 地震主动土压力水平条分法

陈柏吉1, 2, 3,肖世国2   

  1. 1. 西南交通大学 地质工程系,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031; 3. 成都市大邑县档案馆,四川 成都 611330
  • 收稿日期:2021-11-28 修回日期:2022-04-20 出版日期:2022-08-11 发布日期:2022-08-19
  • 通讯作者: 肖世国,男,1973年生,博士,教授,博士生导师,主要从事边坡稳定性与支挡结构方面的研究。E-mail: xiaoshiguo@swjtu.cn E-mail:cbj1996628@qq.com
  • 作者简介:陈柏吉,男,1995年生,硕士研究生,主要从事边坡支挡结构方面的研究。
  • 基金资助:
    国家自然科学基金(No. 51578466);四川省交通运输科技项目(No. 2020-A-01)。

Static and seismic active earth pressure on rigid retaining walls based on horizontal slice method considering shear forces on interslice

CHEN Bai-ji1, 2, 3, XIAO Shi-guo2   

  1. 1. Department of Geological Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Dayi Archives Bureau, Chengdu, Sichuan 611330, China
  • Received:2021-11-28 Revised:2022-04-20 Online:2022-08-11 Published:2022-08-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51578466) and the Construction S&T Project of Department of Transportation of Sichuan Province (2020-A-01).

摘要: 针对以往对刚性挡土墙墙背主动土压力采用水平条分法时条间剪力处理不合理的问题,引入条间抗剪强度发挥系数,提出该发挥系数随深度变化的正弦、线性、双曲3种函数模式,并基于大量土压力的模型试验与现场监测结果统计,给出了该发挥系数的取值方法;在此基础上,通过水平条分极限平衡法及拟静力法,建立了充分考虑条间剪力的刚性挡土墙静力与地震主动土压力计算方法,考虑了墙后土体中平面、对数螺旋曲面两种可能的滑裂面形态,且集挡土墙结构型式、墙后填土性质、外荷载等多因素于一体。当墙-土摩擦角等于内摩擦角或其一半时,条间抗剪强度发挥系数一般不为0,墙-土摩擦角对其影响显著;引入条间抗剪强度发挥系数会使土压力合力作用点更接近实测值,建议墙体平动时采用双曲模式、墙体绕踵转动时可采取正弦模式。土体内摩擦角、墙-土黏聚力、竖向地震影响系数等对土压力合力作用点影响较小,但土体黏聚力、土体顶面倾角、墙背倾角、墙-土摩擦角、水平地震影响系数等对其影响较大。实例分析表明,该方法可定量确定主动土压力分布,所计算的主动土压力与实测值吻合良好,合力及其作用点处最大误差分别约为10%和7%。 关 键 词:刚性挡土墙;主动土压力;水平条分法;条间剪力;分布模式

关键词: 刚性挡土墙, 主动土压力, 水平条分法, 条间剪力, 分布模式

Abstract: In view of the existing unreasonable assumption on interslice shear forces involved in the horizontal slice limit equilibrium method for active earth pressure on rigid retaining walls, a mobilized coefficient of the interslice shear strength of the soil is proposed and its development mode is assumed to be 3 types of function including sine, linear, and hyperbolic patterns. A series of statistical values of the coefficient is given based on a great number of model test and in-situ observed results of the earth pressure. Further, static and seismic active earth pressure on rigid retaining walls can be determined using the horizontal slice method and pseudo-static approach with rationally considering the shear forces on interslice. Planar and log-spiral modes of potential slip surfaces of the retained soil are involved in the proposed method, which takes into account wall configuration, soil properties as well as external loads. It is found that the mobilized coefficient is not usually zero in the condition that wall-soil friction angle is equal to soil internal frictional angle or half of it, and the coefficient is greatly influenced by the wall-soil friction angle. The hyperbolic profile of the mobilized coefficient for wall translation and the sine mode for wall rotation about its heel are recommended because that the introduction of the mobilized coefficient can make the application points of the resultant of the active earth pressure relatively approach to the measured values. Internal friction angle of the soil, wall-soil cohesion, and vertical seismic factor have little effect on the application point of the resultant, while the soil cohesion, dip angle of the soil top surface, wall back inclination, wall-soil friction angle, and horizontal seismic factor have a greater influence. Some examples show that calculation results including the resultant and its application point of the active earth pressure using the proposed method are in good agreement with those monitored, and the maximum errors are less than about 10% and 7%, respectively.

Key words: rigid retaining walls, active earth pressure, horizontal slice method, interslice shear forces, distribution mode

中图分类号: 

  • TU 431
[1] 邓波, 杨明辉, 王东星, 樊军伟, . 刚性挡墙后非饱和土破坏模式及主动土压力计算[J]. 岩土力学, 2022, 43(9): 2371-2382.
[2] 刘新喜, 李彬, 王玮玮, 贺程, 李松. 基于主应力迹线分层的有限土体土压力计算[J]. 岩土力学, 2022, 43(5): 1175-1186.
[3] 张恒志, 徐长节, 何寨兵, 黄展军, 何小辉, . 基于离散元方法的不同挡墙变位模式下有 限土体主动土压力研究[J]. 岩土力学, 2022, 43(1): 257-267.
[4] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[5] 张恒志, 徐长节, 梁禄钜, 侯世磊, 范润东, 冯国辉, . RB模式下刚性挡墙有限土体主动土压力的 离散元模拟与理论研究[J]. 岩土力学, 2021, 42(10): 2895-2907.
[6] 陈建功, 杨扬, 陈彦含, 陈小兵. 考虑抗拉强度的黏性填土挡土墙主动土压力计算[J]. 岩土力学, 2020, 41(6): 1829-1835.
[7] 肖世国, 刘航, 于昕左. 水平柔性拉筋式重力墙−坡体地震整体 稳定性分析方法[J]. 岩土力学, 2020, 41(6): 1836-1844.
[8] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[9] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[10] 刘美麟,侯艳娟,张顶立,房 倩. 砂土地层中考虑基坑施工效应的柔性挡墙主动土压力研究[J]. , 2018, 39(S1): 149-158.
[11] 杨山奇,卢坤林,史克宝,赵瀚天,陈一鸣,. 刚性挡土墙后三维被动滑裂面的模型试验[J]. , 2018, 39(9): 3303-3312.
[12] 闫澍旺,李 嘉,闫 玥,郎瑞卿,纪玉诚, . 轴对称主动土压力问题的滑移线解[J]. , 2018, 39(11): 4133-4141.
[13] 杨 贵,王阳阳,刘彦辰, . 基于曲线滑裂面的挡墙主动土压力分析[J]. , 2017, 38(8): 2182-2188.
[14] 杨明辉,戴夏斌,赵明华,罗 宏. 曲线滑裂面下有限宽度填土主动土压力计算[J]. , 2017, 38(7): 2029-2035.
[15] 骆 晗,李荣建,刘军定,霍旭挺,张 真,孙 萍,. 基于联合强度的黄土主动土压力公式与计算比较[J]. , 2017, 38(7): 2080-2086.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .