岩土力学 ›› 2022, Vol. 43 ›› Issue (10): 2911-2922.doi: 10.16285/j.rsm.2021.2094

• 数值分析 • 上一篇    下一篇

基于考虑动力本构的连续−非连续方法的单轴压缩岩样开裂过程模拟

王学滨1, 2,刘桐辛2,白雪元2,李继翔2   

  1. 1. 辽宁工程技术大学 计算力学研究所,辽宁 阜新 123000;2. 辽宁工程技术大学 力学与工程学院,辽宁 阜新 123000
  • 收稿日期:2021-12-10 修回日期:2022-07-05 出版日期:2022-10-19 发布日期:2022-10-18
  • 作者简介:王学滨,男,1975年生,博士,教授,博士生导师,主要从事工程材料及结构的变形、破坏及稳定性方面的研究。
  • 基金资助:
    国家自然科学基金(No. 52074142)

Numerical simulation of fracturing processes of rock specimens in uniaxial compression based on the continuum-discontinuum method considering the dynamic constitutive model

WANG Xue-bin1, 2, LIU Tong-xin2, BAI Xue-yuan2, LI Ji-xiang2   

  1. 1. Institute of Computational Mechanics, Liaoning Technical University, Fuxin, Liaoning 123000, China; 2. College of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Received:2021-12-10 Revised:2022-07-05 Online:2022-10-19 Published:2022-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52074142).

摘要: 动载作用下岩石的破坏规律研究对于众多地质灾害的机制分析和预防具有重要的理论及实际意义。鉴于数值模拟研究的优势,应大力发展适于岩石动力断裂过程模拟的数值方法。在自主开发的拉格朗日元与离散元耦合连续−非连续方法的基础上,采用朱−王−唐本构模型取代了广义胡克定律,发展了考虑动力本构的连续−非连续方法,其正确性通过模拟不同加载速度时砂岩试样的单轴压缩试验进行了验证。通过统计裂缝区段数目随着岩样的纵向应变的演化规律,并监测岩样左、右对称线上多个测点的最小主应力的演化规律,开展了不同加载速度时单轴压缩花岗岩试样的变形−开裂过程研究,阐明了岩样的开裂机制。研究发现,剪裂缝以雁列式展布,整体上形成剪切带。随着时步数目的增加,各测点的最小主应力均呈波动下降−震荡上升的变化趋势。震荡上升阶段对应岩样的应变软化阶段。测点分离后最小主应力的震荡幅度较大,这是由于节点分离和单元接触激发了较大的应力波。剪切带尖端的最小主应力集中会使测点发生剪切分离。当岩样的三角块向下楔入时,下方测点的应力状态类似于紧凑拉伸试验进而发生拉伸分离。

关键词: 岩石, 动力断裂, 朱?王?唐本构模型, 连续?非连续方法, 单轴压缩, 剪切带, 开裂机制

Abstract: It is important to study failures of rocks under dynamic loads for expounding mechanisms of geological disasters and for predicting and preventing these disasters on theoretical and practical aspects. Owing to advantages of numerical simulation, numerical methods applicable to modeling dynamic fracturing processes must be especially emphasized. Based on the combined Lagrangian-discrete element method, a continuum-discontinuum method considering the dynamic constitutive model was presented, in which the Zhu-Wang-Tang constitutive model was used to replace the generalized Hooke law. The continuum-discontinuum method considering the dynamic constitutive model was validated through modeling uniaxially compressive experiments of sandstone rock specimens for different loading velocities. Evolution of the number of crack segments with the longitudinal strain of the rock specimen was investigated, and evolution of the minimum principal stresses of nodes at the longitudinal symmetric line was also monitored. Deformation-fracturing processes of granite specimens for different loading velocities were modeled, and fracturing mechanisms of rock specimens were revealed. The following results were found. Shear bands include en echelon shear cracks. The minimum principal stress of the node exhibits a fluctuant decrease, followed by an increase in the oscillation form. The increasing stage corresponds to the strain-softening stage of the rock specimen. A large oscillatory amplitude of the minimum principal stress is found for the separating node, which is due to the fact that large stress waves are induced by node separations and contact between elements. Shear separations of nodes occur due to concentrations of the minimum principal stresses at the shear band tip. Motion of the triangle wedge of the rock specimen leads to tensile separations of nodes whose stress states are similar to those of the compact tension experiment.

Key words: rock, dynamic fracturing, Zhu-Wang-Tang constitutive model, continuum-discontinuum method, uniaxial compression, shear band, fracturing mechanism

中图分类号: 

  • TD 313
[1] 高峰, 熊鑫, 熊信, 周科平, . 饱和度对玄武岩微波响应的影响试验研究[J]. 岩土力学, 2022, 43(S2): 43-51.
[2] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[3] 张东晓, 郭伟耀, 赵同彬, 谷雪斌, 陈玏昕, . 岩石I型裂纹定向扩展规律试验研究[J]. 岩土力学, 2022, 43(S2): 231-244.
[4] 张涛, 徐卫亚, 孟庆祥, 王环玲, 闫龙, 钱坤, . 基于3D打印技术的柱状节理岩体试样 力学特性试验研究[J]. 岩土力学, 2022, 43(S2): 245-254.
[5] 岑夺丰, 刘畅, 黄达. 灰岩层面拉剪力学特性及层面起伏效应研究[J]. 岩土力学, 2022, 43(S1): 77-87.
[6] 朱星, 刘汉香, 胡桔维, 范杰, . 砂岩破坏声发射临界慢化前兆特征试验研究[J]. 岩土力学, 2022, 43(S1): 164-172.
[7] 匡智浩, 李邵军, 杜灿勋, 邱士利, 吝曼卿, 杜三林, . 考虑应力变化速率的岩石脆性评价指标[J]. 岩土力学, 2022, 43(S1): 293-300.
[8] 刘学伟, 刘泉声, 汪志强, 刘滨, 康永水, 王传兵, . 基于格栅拱架的软岩巷道分步联合控制技术研究[J]. 岩土力学, 2022, 43(S1): 469-478.
[9] 申浩翰, 张海, 范俊锴, 徐瑞阳, 张小明. 离散单元法软件EDEM中接触半径对岩石 力学特性的影响及其应用[J]. 岩土力学, 2022, 43(S1): 580-590.
[10] 孙冰, 唐文福, 曾晟, 侯珊珊, 方耀楚, . 基于自组织临界理论的岩石声发射能量 与时间的统计分析[J]. 岩土力学, 2022, 43(9): 2525-2538.
[11] 李然, 王圣涛, 张顶立, 陈平, 潘红桂, 李奥, . 小净距隧道中夹岩对拉锚杆控制机制与工程应用[J]. 岩土力学, 2022, 43(7): 1865-1876.
[12] 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545.
[13] 崔国建, 张传庆, 周辉, 卢景景, 高阳, 胡明明, 胡大伟, . 动力扰动作用下多功能岩石结构面剪切 试验装置研制与应用研究[J]. 岩土力学, 2022, 43(6): 1727-1737.
[14] 唐旭海, 许婧璟, 张怡恒, 何琦, 王正直, 张国平, 刘泉声, . 基于微观岩石力学试验和NWA13618陨石的 小行星岩石力学参数分析[J]. 岩土力学, 2022, 43(5): 1157-1163.
[15] 姜玥, 周辉, 卢景景, 高阳, . 空心圆柱砂岩真三轴试验研究[J]. 岩土力学, 2022, 43(4): 932-944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .