岩土力学 ›› 2023, Vol. 44 ›› Issue (10): 2953-2966.doi: 10.16285/j.rsm.2022.0803

• 基础理论与实验研究 • 上一篇    下一篇

考虑硬化和损伤效应的盐岩蠕变本构模型研究

杨俊涛1, 2,宋彦琦1, 2,马宏发2,杨江坤2,邵志鑫2,鲍伟2   

  1. 1. 中国矿业大学(北京) 煤炭资源与安全开采国家重点实验室,北京 100083;2. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083
  • 收稿日期:2022-05-30 接受日期:2022-10-05 出版日期:2023-10-13 发布日期:2023-10-16
  • 通讯作者: 宋彦琦,女,1969年生,博士,教授,博士生导师,主要从事固体力学理论及工程应用等方面的研究工作。E-mail: song_yan_qi@163.com E-mail:yjuntaom@163.com
  • 作者简介:杨俊涛,男,1996年生,硕士研究生,主要从事岩石流变力学理论及蠕变试验等方面的研究工作。
  • 基金资助:
    煤炭资源与安全开采国家重点实验室开放基金课题(No.SKLCRSM20KFA11)

A creep constitutive model of salt rock considering hardening and damage effects

YANG Jun-tao1, 2, SONG Yan-qi1, 2, MA Hong-fa2, YANG Jiang-kun2, SHAO Zhi-xin2, BAO Wei2   

  1. 1. State Key Laboratory Coal Resources and Safe Mining, China University of Mining & Technology (Beijing), Beijing 100083, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2022-05-30 Accepted:2022-10-05 Online:2023-10-13 Published:2023-10-16
  • Supported by:
    This work was supported by the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining (SKLCRSM20KFA11).

摘要: 盐岩是储存化石能源和高放射性核废料的理想介质,研究盐岩蠕变力学特性对地下盐岩储库的安全营运具有重要意义。为合理反映盐岩蠕变过程存在的损伤和硬化两种机制,以元件组合模型为基础,结合分数阶微积分理论建立了一种考虑损伤和硬化效应的盐岩蠕变本构模型。该模型采用考虑时效损伤的弹性元件描述盐岩加载初期的损伤变形,采用分数阶村山体描述盐岩衰减蠕变阶段的黏弹塑性蠕变力学行为;通过引入描述盐岩屈服强度随时间强化的硬化函数来反映盐岩硬化机制;采用瞬时塑性元件描述不可恢复的瞬时变形。基于Kachanov蠕变损伤定律与Lemaitre应变等价原理构造了一种带有应变触发的非线性黏壶元件,该元件能够较好描述盐岩加速蠕变阶段的非线性变形特征。基于组合模型理论推导了考虑硬化和损伤效应的盐岩一维、三维蠕变方程;通过分析已有盐岩单、三轴蠕变试验等时应力−应变曲线特征,确定了村山体启动应力阈值;结合等时应力−应变曲线和蠕变试验数据对模型中的参数进行了辨识。结果表明:建立的蠕变本构模型仅用一组参数即能描述不同应力状态下盐岩的蠕变力学特性,可为预测盐岩蠕变变形特征提供一定的理论依据。

关键词: 盐岩蠕变, 损伤, 塑性硬化, 分数阶导数, 本构模型

Abstract: Salt rock is an ideal medium for storing fossil energy and highly radioactive nuclear waste, and the study of creep mechanical properties of salt rock holds great significance for the safe operation of underground storage in salt caverns. In this study, a creep constitutive model for salt rock considering damage and hardening effects was developed, based on the component combination model and fractional calculus theory, so as to reasonably reflect the two mechanisms of damage and hardening existing in the creep process of salt rocks. The elastic element considering time-dependent damage was used to describe the damage deformation of salt rock in the initial loading stage in this model, and the fractional Murayama body was used to describe the viscoelastic plasticity creep mechanical behavior of salt rocks in transient creep stage. Meanwhile, a hardening function, which describes the strengthening characteristics with time of the yield strength of salt rocks, was introduced to reflect the hardening mechanism of salt rocks, and a transient plastic element was available to depict unrecoverable transient deformation. A nonlinear dashpot element with strain-triggering was constructed based on Kachanov creep damage law and Lemaitre strain equivalence principle. The dashpot better characterized the nonlinear deformation of salt rock in the accelerating creep stage. One-dimensional and three-dimensional creep equations for salt rock considering hardening and damage effects were derived based on the combination model theory. With the characteristics analysis of the isochronous stress-strain curves of the existing uniaxial and triaxial salt rock creep tests, the start-up stress threshold of Murayama body was determined. The parameters in the model were identified by combining isochronous stress-strain curves and creep tests data. The results show that the established creep constitutive model can describe the creep mechanical properties of salt rock in different stress states using only one set of parameters, which can provide a certain theoretical basis for predicting the creep deformation characteristics of salt rock.

Key words: salt rock creep, damage, plastic hardening, fractional derivative, constitutive model

中图分类号: 

  • TU457
[1] 安然, 陈欣, 张先伟, 王港, 高浩东, . 单轴加载过程中钢渣稳定土细观裂隙的动态演化特征[J]. 岩土力学, 2023, 44(增刊): 300-308.
[2] 梁金平, 荆浩勇, 侯公羽, 李小瑞, 张明磊, . 卸荷条件下围岩的细观损伤及力学特性研究[J]. 岩土力学, 2023, 44(增刊): 399-409.
[3] 谢康, 苏谦, 陈晓斌, 刘宝, 王武斌, 王迅, 邓志兴, . 无砟轨道聚氨酯碎石防水联结层单元模型试验研究[J]. 岩土力学, 2023, 44(8): 2308-2317.
[4] 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016.
[5] 李满, 刘先珊, 潘玉华, 乔士豪, 郝梓宇, 钱磊, 罗晓雷, . 循环热冲击后裂隙砂岩力学特性试验研究[J]. 岩土力学, 2023, 44(5): 1260-1270.
[6] 范金洋, 唐璐宣, 陈结, 杨镇宇, 姜德义, . 基于硬化参量的盐岩蠕变疲劳本构模型[J]. 岩土力学, 2023, 44(5): 1271-1282.
[7] 刘新荣, 郭雪岩, 许彬, 周小涵, 曾夕, 谢应坤, 王䶮, . 含消落带劣化岩体的危岩边坡动力累积损伤机制研究[J]. 岩土力学, 2023, 44(3): 637-648.
[8] 王春, 胡慢谷, 王成, . 热−水−力作用下圆孔花岗岩的动态损伤特征及结构模型[J]. 岩土力学, 2023, 44(3): 741-756.
[9] 茹文凯, 胡善超, 李地元, 马金银, 张晨曦, 罗平框, 弓昊, 周奥辉, . 煤岩组合体卸围压能量演化规律及耗散能损伤本构模型研究[J]. 岩土力学, 2023, 44(12): 3448-3458.
[10] 宋勇军, 孙银伟, 李晨婧, 杨慧敏, 张磊涛, 谢丽君, . 基于离散元法模拟的冻融砂岩细观破裂演化特征研究[J]. 岩土力学, 2023, 44(12): 3602-3616.
[11] 黎澄生, 孔令伟, 舒荣军, 刘智军, 张炳鑫, . 花岗岩残积土剪切带上的细观结构损伤规律[J]. 岩土力学, 2023, 44(11): 3203-3212.
[12] 邓泽之, 王刚, 金伟. 考虑水力波动作用的潜蚀本构模型[J]. 岩土力学, 2023, 44(10): 2921-2928.
[13] 赵顺利, 杨之俊, 傅旭东, 方正, . 考虑应变局部化的粗粒料剪切损伤力学机制[J]. 岩土力学, 2023, 44(1): 31-42.
[14] 王磊, 陈礼鹏, 刘怀谦, 朱传奇, 李少波, 范浩, 张帅, 王安铖, . 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(1): 144-158.
[15] 许健, 周立阳, 胡科, 李彦锋, 武智鹏, . 受振动荷载扰动裂隙性黄土单轴压缩力学行为研究[J]. 岩土力学, 2023, 44(1): 171-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高广运,赵元一,高 盟,杨成斌. 分层土中群桩水平动力阻抗的改进计算[J]. , 2010, 31(2): 509 -515 .
[2] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[3] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[4] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .
[5] 明华军,冯夏庭,陈炳瑞,张传庆. 基于矩张量的深埋隧洞岩爆机制分析[J]. , 2013, 34(1): 163 -172 .
[6] 王敬林 ,郑颖人 ,陈瑜瑶 ,李克玉 . 岩土材料极限分析上界法的讨论[J]. , 2003, 24(4): 538 -544 .
[7] 刘 鑫 ,杨 骁 . 悬浮桩水平振动的动力刚度[J]. , 2008, 29(4): 1021 -1026 .
[8] 赵 瑜 ,李晓红 ,卢义玉 ,康 勇 ,陈陆望 . 深埋隧道围岩系统卸荷演化过程的 Lyapunov指数分析[J]. , 2008, 29(10): 2871 -2876 .
[9] 李 鹏,苏生瑞,王闫超,王 琦. 含软弱层岩质边坡的动力响应研究[J]. , 2013, 34(S1): 365 -370 .
[10] 张俊儒,仇文革. 正削式隧道门围岩和衬砌应力计算及设计方法研究[J]. , 2006, 27(11): 2071 -2075 .