岩土力学 ›› 2024, Vol. 45 ›› Issue (4): 1154-1169.doi: 10.16285/j.rsm.2023.0662

• 岩土工程研究 • 上一篇    下一篇

TBM有压输水隧洞内张钢圈-管片-围岩组合结构联合承载力学特性分析

张建伟1,刘贺1,曹克磊1,黄锦林2,王勇3   

  1. 1. 华北水利水电大学 水利学院,河南 郑州 450046;2. 广东省水利水电科学研究院,广东 广州 510635; 3. 珠江水利委员会珠江水利科学研究院,广东 广州 510635
  • 收稿日期:2023-05-25 接受日期:2023-09-18 出版日期:2024-04-17 发布日期:2024-04-18
  • 通讯作者: 曹克磊,男,1990年生,博士,讲师,主要从事水工结构及地下工程方面的研究。E-mail:caokelei@ncwu.edu.cn
  • 作者简介:张建伟,男,1979年生,博士,教授,博士生导师,主要从事水利水电工程方面的研究工作。E-mail:zjwcivil@126.com
  • 基金资助:
    国家自然科学基金(No. 52279133)。

Combined bearing mechanical characteristics of composite structure of inner tensioned steel ring-segment-surrounding rock in a TBM pressurized water conveyance tunnel

ZHANG Jian-wei1, LIU He1, CAO Ke-lei1, HUANG Jin-lin2, WANG Yong3   

  1. 1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China; 2.Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, Guangdong 510635, China; 3.Pearl River Water Resources Research Institute, Pearl River Water Resources Commission, Guangzhou, Guangdong 510635, China
  • Received:2023-05-25 Accepted:2023-09-18 Online:2024-04-17 Published:2024-04-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52279133).

摘要: 为探究全断面隧道岩石掘进机(tunnel boring machine,TBM)有压输水隧洞内张钢圈-管片-围岩组合结构的受荷状态,以榕江―关埠引水工程中Ⅴ类围岩TBM有压输水隧洞段为研究对象,建立内张钢圈-管片-围岩组合结构三维精细化有限元模型,研究内水压力、围岩类型对组合结构力学特性的影响。研究结果表明:采用内张钢圈加固隧洞结构能有效控制隧洞变形,减小管片拉应力及受拉区范围,提高组合结构的承载能力;内水压力作用下管片压应力、竖向变形、接缝张开度、连接螺栓应力、内张钢圈应力、锚杆应力均较无内水压力作用下有所减小,但管片拉应力和接缝错台分别增大了19.68%、39.25%,其主要原因为内水压力作用致使隧洞结构整体呈现向外膨胀,在充水运营期间应加强内水压力作用下的安全监测;在外部水土压力和内水压力共同作用下,围岩类型的改变使组合结构中连接螺栓应力、管片接缝错台、锚杆应力分别提高37.11%、15.29%、14.75%,其主要原因为围岩岩性越差承担荷载能力越弱,在围岩类型的过渡区域应进行重点监测;此外,在外部水土压力和内水压力共同作用下,组合结构中围岩、管片、内张钢圈、锚杆的荷载分担率分别为21.38%、43.08%、24.01%和11.53%,内张钢圈荷载分担率较无内水压力作用提高了34.06%,内水压力作用提高了内张钢圈分担荷载的效果;组合结构中围岩的分担率随围岩类型(Ⅲ类、Ⅳ类、Ⅴ类)的增加而减小,相同荷载下Ⅲ类围岩的荷载分担率较Ⅴ类围岩提高了16.96%。该研究成果可为类似隧洞工程的衬砌设计及后期加固措施提供理论参考。

关键词: 输水隧洞, 组合结构, 管片衬砌, 内张钢圈, 力学特性, 分担率

Abstract: In order to investigate the loading state of the combined structure of inner tension ring-segment-surrounding rock in tunnel boring machine (TBM) pressurized water conveyance tunnel, a three-dimensional refined finite element model of the composite structure comprising the inner tension ring-segment-surrounding rock in a TBM pressurized water conveyance tunnel has been established for the Class V TBM pressurized water conveyance tunnel of the Rongjiang-Guanbu water diversion project. The study has yielded important findings. The reinforcement of the tunnel structure with internal tensile steel ring can effectively control the deformation of the tunnel, reduce the tensile stress of the segment and the range of tension zone, and improve the bearing capacity of the composite structure. Under the action of internal water pressure, various parameters such as compression stress, vertical deformation, joint opening degree, stress of connecting bolts, stress of the inner tension ring, and stress of anchor rods all decrease compared to conditions without internal water pressure. However, the tensile stress of the segment and joint misalignment increase by 19.68% and 39.25%, respectively. The main reason is that the overall expansion of the tunnel structure is caused by internal water pressure. This underscores the need for strengthened safety monitoring during water filling operations. Under the combined action of external water and soil pressure and internal water pressure, the change of surrounding rock type lead to increased stress of connecting bolt, the misalignment of segment joints and the stress of anchor bolt by 37.11%, 15.29% and 14.75%, respectively. This highlights the importance of monitoring in the transition area of surrounding rock types where the load-bearing capacity is poorer. In addition, under the combined action of external water and soil pressure and internal water pressure, the load sharing rate of surrounding rock, segment, inner tension steel ring and anchor bolt is 21.38%, 43.08%, 24.01% and 11.53%, respectively. The load sharing rate of inner tension steel ring is 34.06% higher than that without internal water pressure. The effect of internal water pressure improves the load sharing effect of the inner tension steel ring. The load sharing ratio of surrounding rock in composite structure decreases with the increase of surrounding rock types (Class Ⅲ, Class Ⅳ, Class Ⅴ), and the load sharing ratio of class Ⅲ surrounding rock is 16.96% higher than that of Class Ⅴ under the same load. These research findings provide valuable theoretical reference for lining design and late reinforcement measures of similar tunnel projects.

Key words: water conveyance tunnel, composite structure, segment lining, inner tensile steel ring, mechanical properties, sharing rate

中图分类号: 

  • TU 452
[1] 郅彬, 王尚杰. 干湿-冻融循环下黄土力学特性及损伤机制研究[J]. 岩土力学, 2024, 45(4): 1092-1102.
[2] 蒋济泽, 王成龙, 黄煜镔, 赵华, 陈志雄, . 竖向和水平组合荷载下能量桩单桩变形特性[J]. 岩土力学, 2024, 45(3): 788-796.
[3] 范浩, 王磊, 王连国, . 不同应力路径下层理煤体力学特性试验研究[J]. 岩土力学, 2024, 45(2): 385-395.
[4] 张培森, 许大强, 李腾辉, 胡昕, 赵成业, 侯季群, 牛辉, . 裂隙砂岩注浆前后渗流特性及注浆后 力学特性试验研究[J]. 岩土力学, 2023, 44(S1): 12-26.
[5] 王家全, 仲文涛, 黄世斌, 唐毅, . 模块式加筋土挡墙模型试验及静动力学性能研究[J]. 岩土力学, 2023, 44(5): 1435-1444.
[6] 杨忠平, 李进, 刘浩宇, 张益铭, 刘新荣, . 土石混合体−基岩界面剪切力学特性块石尺寸效应[J]. 岩土力学, 2023, 44(4): 965-974.
[7] 王伟, 张宽, 曹亚军, 陈超, 朱其志, . 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44(4): 975-989.
[8] 梁靖宇, 沈万涛, 路德春, 齐吉琳, . 考虑沉积角影响的冻结砂土单轴压缩试验研究[J]. 岩土力学, 2023, 44(4): 1065-1074.
[9] 张平, 任松, 张闯, 吴斐, 隆能增, 李凯鑫, . 循环扰动和高温作用下砂岩的岩爆倾向性及破坏特征研究[J]. 岩土力学, 2023, 44(3): 771-783.
[10] 荣浩宇, 王伟, 李桂臣, 许嘉徽, 梁东旭, . 岩石−锚固剂结构水化失稳微观力学特性[J]. 岩土力学, 2023, 44(3): 784-798.
[11] 胡南燕, 黄建彬, 罗斌玉, 李雪雪, 陈敦熙, 曾子懿, 付晗, 娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究[J]. 岩土力学, 2023, 44(12): 3471-3480.
[12] 康佐, 亢佳伟, 邓国华, . 欠压密饱和黄土基本物理力学性质研究[J]. 岩土力学, 2023, 44(11): 3117-3127.
[13] 王磊, 陈礼鹏, 刘怀谦, 朱传奇, 李少波, 范浩, 张帅, 王安铖, . 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(1): 144-158.
[14] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[15] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[5] 陈 阵,陶龙光,李 涛,李海斌,王综勇. 支护结构作用的箱基沉降计算新方法[J]. , 2009, 30(10): 2978 -2984 .
[6] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[7] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[8] 胡 伟,黄 义,刘增荣. 循环荷载下饱和黄土不排水强度退化规律试验与理论研究[J]. , 2009, 30(10): 2996 -3000 .
[9] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[10] 郭军辉,程卫国,张 滨. 土工格栅低温下蠕变特性试验研究[J]. , 2009, 30(10): 3009 -3012 .