›› 2009, Vol. 30 ›› Issue (12): 3871-3875.

• 数值分析 • 上一篇    下一篇

径向双侧壁排水软土地基固结数学模型及解析解

兰四清1,王玉林1, 2,谢康和2   

  1. 1.武夷学院 建筑与土木工程系,武夷山 354300;2.浙江大学 土木系,杭州 310027
  • 收稿日期:2008-02-25 出版日期:2009-12-10 发布日期:2010-01-18
  • 作者简介:兰四清,男,1966年生,副教授,从事岩土力学方面的教学和研究工作。

Mathematical model and analytical solutions of soft soil consolidation with both way drainages in radial directions

LAN Si-qing1, WANG Yu-lin1, 2, XIE Kang-he2   

  1. 1. Department of Architecture and Civil Engineering, Wuyi University, Wuyishan 354300, China; 2. Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2008-02-25 Online:2009-12-10 Published:2010-01-18

摘要:

在软土地基中设置成层的环状排水砂层,使饱和土中孔隙水沿径向具有两个相反方向的排水通道,超静孔压可以朝环状土层的两圆侧壁消散,通过径向排水通道的增加及排水路径的缩短,可以加快软土固结。基于这种思路,建立了相应的饱和软土固结数学模型,进行了求解,并通过实例对超静孔压分布和发展规律以及软土固结性状进行了分析。

关键词: 超静孔压, 排水通道, 环状土层, 固结, 数学模型

Abstract:

Pore-water in saturated soil gains both way drainages in radial directions by installing annular sand-layered drainages into the soft soil ground, and then the excess pore-water pressure can be dissipated along the two lateral surfaces of every annular soil layer. As addition of radial dissipation surface and reduction of dissipating distance, soft soil foundation can consolidate faster. Based on these ideas, the corresponding mathematical model of saturated soil consolidation and its analytical solution is presented; and then by a case study, the distribution and development of excess pore-water pressure, and consolidation characteristics of saturated soil are analyzed.

Key words: excess pore-water pressure, drainage way, annular soil layer, consolidation, mathematical model

中图分类号: 

  • TU 470
[1] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[2] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[3] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[4] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[5] 张雷, 王宁伟, 景立平, 方晨, 董瑞, . 电渗排水固结中电极材料的对比试验[J]. 岩土力学, 2019, 40(9): 3493-3501.
[6] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[7] 邱金伟, 蒲诃夫, 陈训龙, 吕伟东, 李磊. 污染泥堆场处置中自重固结 与污染物迁移的耦合分析[J]. 岩土力学, 2019, 40(8): 3090-3098.
[8] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[9] 李称, 吴文兵, 梅国雄, 宗梦繁, 梁荣柱, . 不同排水条件下城市固废一维降解固结解析解[J]. 岩土力学, 2019, 40(8): 3071-3080.
[10] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[11] 杨德欢, 颜荣涛, 韦昌富, 潘雪瑛, 张芹, . 饱和黏土平均粒间应力的确定方法[J]. 岩土力学, 2019, 40(6): 2075-2084.
[12] 龚文惠, 赵旭东, 邱金伟, 李逸, 杨晗. 饱和软土大应变自重固结非线性分析[J]. 岩土力学, 2019, 40(6): 2099-2107.
[13] 加瑞, 雷华阳, . 有明黏土各向异性固结特性的试验研究[J]. 岩土力学, 2019, 40(6): 2231-2238.
[14] 罗庆姿, 陈晓平, 袁炳祥, 冯德銮, . 柔性侧限条件下软土的变形特性及固结模型[J]. 岩土力学, 2019, 40(6): 2264-2274.
[15] 蒲诃夫, 宋丁豹, 郑俊杰, 周 洋, 闫 婧, 李展毅. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何思明,吴 永,李新坡. 嵌岩抗拔桩作用机制研究[J]. , 2009, 30(2): 333 -337 .
[2] 刘清秉,项 伟,张伟锋,崔德山. 离子土壤固化剂改性膨胀土的试验研究[J]. , 2009, 30(8): 2286 -2290 .
[3] 况雨春,伍开松,杨迎新,马德坤. 三牙轮钻头破岩过程计算机仿真模型[J]. , 2009, 30(S1): 235 -238 .
[4] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .
[5] 鄢治华,刘志伟,刘厚健. 黄河阶地上某电厂高边坡参数选取及其工程治理[J]. , 2009, 30(S2): 465 -468 .
[6] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[7] 温世清 ,刘汉龙 ,陈育民. 浆固碎石桩单桩荷载传递特性研究[J]. , 2011, 32(12): 3637 -3641 .
[8] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[9] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .
[10] 孟 振,陈锦剑,王建华,尹振宇. 砂土中螺纹桩承载特性的模型试验研究[J]. , 2012, 33(S1): 141 -145 .