岩土力学 ›› 2020, Vol. 41 ›› Issue (4): 1146-1152.doi: 10.16285/j.rsm.2019.1190

• 基础理论与实验研究 • 上一篇    下一篇

偏高岭土增强石灰-水泥固化淤泥的耐久性研究

谈云志1,柯睿1, 2,陈君廉1,吴军3,邓永锋3   

  1. 1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002;2. 中国地质大学 工程学院,湖北 武汉 430074; 3. 东南大学 交通学院,江苏 南京 211189
  • 收稿日期:2019-07-06 修回日期:2019-08-13 出版日期:2020-04-11 发布日期:2020-07-01
  • 作者简介:谈云志,男,1979年生,博士,教授,主要从事特殊土方面的教学与科研工作
  • 基金资助:
    国家自然科学基金(No.51579137);湖北省优秀中青年科技创新团队计划项目(No.T201803);中央财政支持地方高校发展专项(2016)

Enhancing durability of lime-cement solidified sludge with metakaolin

TAN Yun-zhi1, KE Rui1, 2, CHEN Jun-lian1, WU Jun3, DENG Yong-feng3   

  1. 1. Key Laboratory of Geological Hazards in Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 3. School of Transportation, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2019-07-06 Revised:2019-08-13 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51579137), the Youth Innovation Team Project of Hubei Province (T201803) and the Special Program of Central Financial Ministry for Supporting Local College Development (2016).

摘要: 淤泥富含有机质,分解后产生腐殖酸,进而影响淤泥固化效果。仅掺入12%水泥固化淤泥,当标准养护期超过60 d,其强度不增反减。联合掺入3%石灰和12%水泥,固化淤泥的pH值持续180 d处于10.5以上;无侧限抗压强度由750 kPa(养护期28 d)提升到1 500 kPa(120 d),说明借助石灰营造强碱性环境,可以提高水泥固化淤泥的强度;但养护到180 d后,其强度又降到1 250 kPa;钙离子浓度变化规律表明,这是由于腐殖酸溶蚀水泥和石灰的水化胶结物所致。借助偏高岭土卓越的火山灰反应能力,掺入3.0%偏高岭土,提升石灰(3%)?水泥(12%)固化淤泥的耐久性,发现180 d养护期内,其强度始终处于增长趋势,究其原因是偏高岭土富含无定形硅、铝氧化物,具有快速捕获氢氧化钙溶液中钙离子的能力,形成稳定的胶结物,而且不易受腐殖酸的侵蚀作用,证明偏高岭土能够有效提升石灰?水泥固化淤泥长期强度。

关键词: 淤泥, 腐殖酸, 偏高岭土, 有机质含量, 耐久性

Abstract: Sludge is rich in organic matter, which would generate humic acid after decomposition. Humic acid will affect the reaction process and strength of cement-treated soil. The unconfined compressive strength (UCS) of sludge treated with 12% cement may decrease after 60 days curing. If adding both of lime (3%) and cement (12%) into sludge, the pH value of treated soils is higher than 10.5 after 180 days curing, and the UCS increases from 750 kPa (cured 28 d) to 1 500 kPa (cured 120 d), which indicates that lime can improve the UCS of treated sludge significantly through establishing suitable strong alkaline environment. However, the UCS of treated sludge reduces to 1 250 kPa after 180 days curing, which may ascribe to humic acid dissolving hydration products of lime and/or cement. The calcium ion concentration increases with the elapsing of curing period, which could explain the behavior of humic acid attacking to hydration products. Metakaolin contains lots of amorphous silicon and aluminum oxides, with the addition of 3% metakaolin into sludge based on mixing with lime (3%) and cement (12%), the UCS increases in the whole curing period (180 d). The results show that metakaolin can capture the calcium ion in short time and form stable cementitious materials in solidified soils. And these cementitious materials have strong anti-erosion capacity to humic acid effect. These above findings prove that metakaolin can improve the long-term performance of cement treated sludge.

Key words: sludge, humic acid, metakaolin, organic matter content, durability

中图分类号: 

  • TU 411
[1] 谈云志, 占少虎, 沈克军, 左清军, 明华军, . 处治红黏土团粒的表层硬化与粒间胶结效应[J]. 岩土力学, 2021, 42(2): 361-368.
[2] 王东星, 陈政光, . 氯氧镁水泥固化淤泥力学特性及微观机制[J]. 岩土力学, 2021, 42(1): 77-85.
[3] 谈云志, 占少虎, 胡焱, 曹玲, 邓永锋, 明华军, 沈克军, . 石灰-红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104-112.
[4] 谈云志, 胡焱, 曹玲, 邓永锋, 明华军, 沈克军, . 偏高岭土协同石灰钝化红黏土水敏性的机制[J]. 岩土力学, 2020, 41(7): 2207-2214.
[5] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[6] 王东星, 唐弈锴, 伍林峰, . 疏浚淤泥化学絮凝−真空预压深度脱水效果评价[J]. 岩土力学, 2020, 41(12): 3929-3938.
[7] 和法国, 吕燃, 粟华忠, 周瑾, 张景科, 王南, . SH材料加固夯筑遗址土耐久性试验及机理研究[J]. 岩土力学, 2019, 40(S1): 297-307.
[8] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[9] 郑耀林, 章荣军, 郑俊杰, 董超强, 陆展, . 絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114.
[10] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[11] 王东星, 王宏伟, 邹维列, 徐学勇, . 活性MgO−粉煤灰固化淤泥耐久性研究[J]. 岩土力学, 2019, 40(12): 4675-4684.
[12] 谈云志, 胡焱, 邓永锋, 曹玲, 左清军, 明华军, . 偏高岭土协同石灰抑制红黏土收缩的行为与机制[J]. 岩土力学, 2019, 40(11): 4213-4219.
[13] 于博伟,杜延军,刘辰阳,薄煜琳. 活性MgO碱性激发粒化高炉矿渣固化黏土的抗硫酸盐侵蚀试验研究[J]. , 2015, 36(S2): 64-72.
[14] 纪文栋 ,张宇亭 ,颜容涛 ,王 欢 ,孟 毅 , . 高吸水材料改善高含水率淤泥流动性的试验研究[J]. , 2015, 36(S1): 281-286.
[15] 刘 楷 ,李仁民 ,杜延军 ,魏明俐 , . 气泡混合轻质土干湿循环和硫酸钠耐久性试验研究[J]. , 2015, 36(S1): 362-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[8] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. , 2009, 30(11): 3217 -3231 .