岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3328-3334.doi: 10.16285/j.rsm.2021.0317
冯衡1,高斐略1,刘观仕2,高彬1,肖飞2,曾二贤1
FENG Heng1, GAO Fei-lüe1, LIU Guan-shi2, GAO Bin1, XIAO Fei2, ZENG Er-xian1
摘要: 越来越多输电线路穿过风积沙覆盖的沙漠地区,金属装配式基础具有良好的适用性,但目前现场试验研究甚少。在毛乌素沙地南缘的陕西榆林地区,开展多组风积沙地基金属装配式基础的真型上拔试验,测试与分析基础的上拔承载力、上拔与地表位移、支架与底板应力、上部土压力等参数变化。研究结果表明:金属装配式基础的上拔荷载?位移曲线形态与扩展基础类似,可分为近似直线段、塑性过渡段和直线失稳段;上拔累计竖向位移达到21~23 mm时,基础进入极限状态;加载过程中基础顶部周围地表若出现细小裂缝,并沿对角线方向扩展,则基础在下一级荷载下进入极限状态;通过分析基础上部土压力的变化特征,可发现基础上拔破裂面上的破裂点,据此推算出实际上拔角;现有规范中土重法计算的上拔承载力,相较极限上拔承载力试验值偏大,建议相关地区基础设计时上拔角取为19.0o~19.5o。
中图分类号:
[1] | 肖飞, 孔令伟, 刘观仕, 冯衡, 董义义, 曾二贤, . 中密风积沙地层金属装配式基础抗拔模型试 验与承载力改进计算方法[J]. 岩土力学, 2022, 43(1): 65-75. |
[2] | 晏青, 赵均海, 张常光. 基于统一强度理论的临坡加筋地基极限承载力新解[J]. 岩土力学, 2021, 42(6): 1587-1600. |
[3] | 杨坚, 简文彬, 黄炜, 黄聪惠, 罗金妹, 李先忠, . 注浆支盘式锚杆拉拔试验及极限承载力计算[J]. 岩土力学, 2021, 42(4): 1126-1132. |
[4] | 林志, 胡伟, 赵璞, 陈秋南, 贺建清, 陈洁, 史旦达, . 砂土中平板圆锚倾斜拉拔承载特性模型试验研究[J]. 岩土力学, 2021, 42(11): 3059-3068. |
[5] | 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236. |
[6] | 胡伟, 孟建伟, 姚琛, 雷勇, . 浅埋平板圆锚竖向拉拔极限承载力计算方法[J]. 岩土力学, 2020, 41(9): 3049-3055. |
[7] | 荣驰, 陈卫忠, 袁敬强, 张铮, 张毅, 张庆艳, 刘奇, . 新型水玻璃−酯类注浆材料及其固沙体特性研究[J]. 岩土力学, 2020, 41(6): 2034-2042. |
[8] | 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735. |
[9] | 杨学祥, 焦园发, 杨语驿, . 充气膨胀控制锚杆的研制与试验[J]. 岩土力学, 2020, 41(3): 869-876. |
[10] | 安百富, 王栋达, 庞继禄, 张恒, 曹国磊, . 充填回收房式煤柱围岩变形及煤柱承载 特征物理模拟研究[J]. 岩土力学, 2020, 41(12): 3979-3986. |
[11] | 史旦达, 毛逸瑶, 杨勇, 原媛, 郝冬雪, . 基于DIC技术的砂土中圆形锚板上拔土体 变形特性试验研究[J]. 岩土力学, 2020, 41(10): 3201-3213. |
[12] | 雷勇, 邓加政, 刘泽宇, 李君杰, 邹根. 考虑荷载位置偏移的空洞岩石地基极限承载力 计算方法[J]. 岩土力学, 2020, 41(10): 3326-3331. |
[13] | 王东英, 汤华, 尹小涛, 杨光华, 姜燕, . 基于简化力学模型的隧道锚极限承载力估值公式[J]. 岩土力学, 2020, 41(10): 3405-3414. |
[14] | 蒋万里, 朱国甫, 张杰, . 单桩承载力的一种直接动测法[J]. 岩土力学, 2020, 41(10): 3500-3508. |
[15] | 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837. |
|