›› 2013, Vol. 34 ›› Issue (S2): 318-324.

• 岩土工程研究 • 上一篇    下一篇

Ⅳ级自重湿陷性黄土区客运专线铁路路堤处理地基的现场试验研究

王小军1,王文笛2,李 明3,魏永梁4,杨印海4,屈耀辉4   

  1. 1. 浙江大学 宁波理工学院,浙江 宁波 315100;2. 宁波工程学院 建筑工程学院,浙江 宁波 315211; 3. 中交第二航务工程局有限公司,安徽 芜湖 241007;4. 中铁西北科学研究院有限公司,兰州 730000
  • 收稿日期:2013-06-29 出版日期:2013-11-11 发布日期:2013-11-19
  • 通讯作者: 王文笛,女,1991年生,本科学生,主要从事建筑学与建筑工程的学习与研究工作。E-mail: 308930664@qq.com E-mail:wangxiaojungs@163.com
  • 作者简介:王小军,男,1965年生,博士,教授,主要从事岩土工程、地基与路基工程、城市轨道交通地下工程的研究与教学工作
  • 基金资助:

    铁道部科技研究开发计划项目(No.2005K001-B-2);宁波市自然科学基金项目(No.2010A610085);宁波市社会发展科研项目(No.2011C50051);宁波市科技创新团队项目(No.2011B81005);宁波市重大(重点)科技攻关计划项目(No.2011C51011)。

Field test research on treatment effect of embankment foundation in class Ⅳ dead-weight collapsible loess zone along railway passenger dedicated line

WANG Xiao-jun1,WANG Wen-di2,LI Ming3,WEI Yong-liang4,YANG Yin-hai4,QU Yao-hui4   

  1. 1. Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100, China; 2. School of Architecture Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315211, China; 3.The Second Navigation Engineering Bureau of China Communication Construction Company Ltd., Wuhu, Anhui 241007, China; 4. Northwest Research Institute Co., Ltd., of China Railway Engineering Corporation, Lanzhou 730000, China
  • Received:2013-06-29 Online:2013-11-11 Published:2013-11-19

摘要: 试验段为自重湿陷性Ⅳ级黄土场地,分3种不同地基处理措施试验分区,分区之间设地基不处理过渡段。柱锤冲扩桩段对22 m深湿陷性黄土层全部处理,水泥挤密桩段仅处理上部15 m深湿陷性黄土层,强夯段处理上部6 m深湿陷性黄土层。结果表明,处理深度范围内黄土的湿陷性已消除,地基承载力均大于标准值。柱锤冲扩桩与水泥土挤密桩复合地基沉降量小于15 mm,满足高速铁路对工后沉降量的要求,而强夯地基的沉降量不满足要求。柱锤冲扩桩区段,桩间土的最小和平均挤密系数不低于0.88和0.93的标准,但是桩身平均压实系数和压缩模量却分别低于0.97和100 MPa的标准。水泥挤密桩区段,桩间土的最小和平均挤密系数、桩身平均压实系数和压缩模量也低于同样的标准值。强夯地基的压缩模量小于15 MPa的标准。检测标准的合理取值有待深入研究。

关键词: 铁路客运专线, 湿陷性黄土, 路堤地基, 处理效果, 现场试验

Abstract: The experimental section is located in the class Ⅳ dead-weight collapsible loess site and is composed of three different kinds of loess foundation treatment measures. The transition sections without foundation treatment exist between them. All 22 m depth of collapsible loess is treated in zone of piles with down hole dynamic compaction. The upper 15 m depth of collapsible loess is treated in zone of cement soil compaction piles. The upper 6 m depth of collapsible loess is treated in zone of dynamic compaction. The results show that the collapsibility of loess within treatment depth has been completely eliminated. Their bearing capacity is higher than the standard value. The composite foundation settlements of piles with down hole dynamic compaction and cement soil compaction piles are less than 15 mm after construction for high-speed railway; but the dynamic compaction foundation can not meet the same requirement. In zone of pile with down hole dynamic compaction, the minimum and average coefficients of compaction are respectively more than the standard values of 0.88 and 0.93; but the average coefficient of compaction and compression modulus of piles are respectively less than the standard values of 0.97 and 100 MPa. In zone of piles with cement-soil compaction piles, the minimum and average coefficients of compaction, or the average coefficient of compaction and compression modulus of piles are also less than the same standard values. Average compression modulus of dynamic foundation is less than the standard value of 15 MPa. The reasonable values of test standard need further study.

Key words: railway passenger dedicated line, collapsible loess, embankment foundation, treatment effect, field test

中图分类号: 

  • U 238
[1] 陆晨凯, 孔纲强, 孙广超, 陈斌, 殷高翔, . 桩−筏基础中能量桩热−力耦合特性现场试验[J]. 岩土力学, 2019, 40(9): 3569-3575.
[2] 朱彦鹏, 杜晓启, 杨校辉, 栗慧王君, . 挤密桩处理大厚度自重湿陷性黄土地区综合 管廊地基及其工后浸水试验研究[J]. 岩土力学, 2019, 40(8): 2914-2924.
[3] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[4] 吴爽爽, 胡新丽, 龚辉, 周昌, 徐楚, 王强, 应春业, . 3种模式下钻孔灌注桩桩-土剪切特性 现场试验研究[J]. 岩土力学, 2019, 40(7): 2838-2846.
[5] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[6] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[7] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[8] 李 驰, 王 硕, 王燕星, 高 瑜, 斯日古楞, . 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
[9] 任连伟, 孔纲强, 郝耀虎, 刘汉龙, . 基于能量桩现场试验的土体综合热导率系数研究[J]. 岩土力学, 2019, 40(12): 4857-4864.
[10] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[11] 王炳龙,梅 祯,肖军华. 土工格室补强路基整治路基病害的试验研究[J]. , 2018, 39(S1): 325-332.
[12] 郭 飞,陶连金,孔 恒,马红红,张丽丽,张新全,. 兰州砂卵石地层盾构施工振动传播及衰减特性分析[J]. , 2018, 39(9): 3377-3384.
[13] 喻豪俊,彭社琴,赵其华,. 碎石土斜坡水平受荷桩承载特性研究[J]. , 2018, 39(7): 2537-2545.
[14] 王翔鹰,陈育民,江 强,刘汉龙, . 抗液化排水刚性桩沉桩过程的土压力响应[J]. , 2018, 39(6): 2184-2192.
[15] 付海清,袁晓铭,王 淼,. 基于现场液化试验的饱和砂土孔压增量计算模型[J]. , 2018, 39(5): 1611-1618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 赵延林,王卫军,曹 平,王 军,赵阳升. 不连续面在双重介质热-水-力三维耦合分析中的有限元数值实现[J]. , 2010, 31(2): 638 -644 .
[4] 孙德安,陈 波. 重塑超固结上海软土力学特性及弹塑性模拟[J]. , 2010, 31(6): 1739 -1743 .
[5] 汪 洋,唐雄俊,谭显坤,王元汉. 云岭隧道底鼓机理分析[J]. , 2010, 31(8): 2530 -2534 .
[6] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[7] 胡 琦,凌道盛,陈云敏. 基于Melan解的水平基床系数分析方法及工程运用[J]. , 2009, 30(1): 33 -39 .
[8] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[9] 黄 明,刘新荣,祝云华,钟祖良. 低频周期荷载下广义Kelvin-Voigt模型特性研究[J]. , 2009, 30(8): 2300 -2304 .
[10] 张雪婵 ,龚晓南 ,尹序源 ,赵玉勃. 杭州庆春路过江隧道江南工作井监测分析[J]. , 2011, 32(S1): 488 -0494 .