岩土力学 ›› 2023, Vol. 44 ›› Issue (12): 3481-3494.doi: 10.16285/j.rsm.2022.1908

• 基础理论与实验研究 • 上一篇    下一篇

多期地震作用的台阶式顺层岩质边坡震裂破坏机制

信春雷1, 2,杨飞1,冯文凯1, 2,李文惠1,廖军1   

  1. 1. 成都理工大学 环境与土木工程学院,四川 成都 610059;2. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2022-12-06 接受日期:2023-05-18 出版日期:2023-12-20 发布日期:2023-12-21
  • 通讯作者: 冯文凯,男,1974年生,博士,教授,主要从事震裂斜坡形成与致灾机制方面的研究工作。E-mail: fengwenkai@cdut.cn E-mail:xinchunlei@cdut.edu.cn
  • 作者简介:信春雷,男,1986年生,博士,副教授,主要从事岩土工程与地下工程抗减震方面的教学与科研工作。
  • 基金资助:
    国家自然科学基金(No.52108361,No.41977252);四川省科技厅重点研发项目(No.2023YFS0436);地质灾害防治与地质环境保护国家重点实验室自主课题和开放基金(No.SKLGP2020Z001,No.SKLGP2020K018)。

Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations

XIN Chun-lei1, 2, YANG Fei1, FENG Wen-kai1, 2, LI Wen-hui1, LIAO Jun 1   

  1. 1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2022-12-06 Accepted:2023-05-18 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52108361, 41977252), the Key Research and Developement Program of Sichuan Science and Technology Department (2023YFS0436) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z001, SKLGP2020K018).

摘要:

高烈度区斜坡震裂变形体广泛存在,为理清台阶式顺层岩质边坡在多期地震作用下的震裂破坏机制,以三清高速路堑斜坡为原型,开展大型振动台试验。引入加速度放大系数比(ratio of acceleration amplification factor,RAAF)研究不同台阶位置加速度动力响应差异性,利用希尔伯特−黄变换和边际谱识别边坡震裂累积损伤及失稳破坏过程,结合边坡失稳破坏现象阐明台阶式边坡震裂破坏机制。结果表明:边坡具有高程放大效应,加速度放大系数随输入地震波峰值增加呈现先增加再降低的趋势。RAAF在输入地震波峰值为0.6g前后出现正负突变,表明输入地震波峰值为0.6g是改变两种类型边坡动力响应差异性的“临界值”。多期地震作用下,希尔伯特谱低频部分减小,高频部分增加,岩体和夹层表现出滤波作用。水平地震作用下,台阶阴角极易产生动拉应力集中,造成阴角处被拉裂。不均匀台阶宽度边坡的渐进破坏过程为第2级台阶首先出现拉裂缝→上部岩层沿软弱夹层滑动→坡顶后缘拉裂→第1级台阶拉裂并脱离坡体。均匀台阶宽度边坡各级台阶阴角均出现拉裂缝,边坡未出现明显滑动面。模型试验揭示了台阶式岩质边坡的震裂破坏机制,针对勘察设计和施工应加强各级台阶阴角变形量的监测,阴角处可做圆弧处理降低应力集中现象。坡脚处可设置抗滑桩,提高边坡出现震裂破坏的阈值,增强边坡稳定性。

关键词: 多期地震作用, 台阶式顺层岩质边坡, 震裂破坏机制, 振动台试验

Abstract:

The shattering deformation masses in high seismic intensity area are widely distributed. In order to understand the shattering failure mechanism of step-like bedding rock slopes under multi-stage earthquake excitations, a large-scale shaking table test is conducted based on the cut slope of Sanqing Expressway. The ratio of acceleration amplification factor (RAAF) is proposed to investigate the difference of acceleration dynamic response at different positions, while the Hilbert-Huang transform and marginal spectrum are used to identify the cumulative damage effect and failure process. Combined with the slope failure phenomenon, the shattering failure mechanism is clarified. The results show that the slope has an elevation amplification effect, and the acceleration amplification factor tends to increase first and then decrease with the increase of the input peak seismic wave. The RAAF undergoes a positive-to-negative mutation before and after the 0.6g input seismic wave peak, which is the critical value for changing the dynamic response between the two slope types. Under multi-stage earthquake excitations, the low-frequency component of the Hilbert spectrum decreases while the high-frequency component increases, indicating a filtering effect of rock mass and interlayer. Under horizontal seismic excitation, the internal corners of the step are easy to exhibit dynamic tensile stress concentration, resulting in the internal corners prone to be shattered. For the slope with uneven step width, the progressive failure processes involve the second step being shattered firstly, followed by the upper rock mass sliding along the weak interlayer, the rear edge of the slope top being pulled apart, and finally, the first step being pulled apart and separated from the slope body. For the slope with even step width, the cracks appeared at the internal corners of each step, while there was no obvious sliding surface. The shaking table test reveals the shattering failure mechanism of step-like bedding rock slopes. In survey, design, and construction, it is significant to pay attention to the deformation at the internal corners of each step and apply an arc treatment to reduce stress concentration. Additionally, anti-slip piles can be installed at the slope toe to increase the threshold for shattering failure and enhance stability of the rock slope.

Key words: multi-stage earthquake excitations, step-like bedding rock slope, shattering failure mechanism, shaking table test

中图分类号: 

  • TU42
[1] 王通, 刘先峰, 袁胜洋, 蒋关鲁, 胡金山, 邵珠杰, 田士军, . 顺倾及反倾层状碎裂结构斜坡地震反应的大型振动台试验研究[J]. 岩土力学, 2024, 45(2): 489-501.
[2] 冯海洲, 蒋关鲁, 何梓雷, 郭玉丰, 胡金山, 李杰, 袁胜洋, . 预应力锚索桩板墙加固隧道洞口边坡的动力响应特性研究[J]. 岩土力学, 2023, 44(增刊): 50-62.
[3] 王志颖, 郭明珠, 曾金艳, 王晨, 刘晃. 地震作用下含软弱夹层顺层岩质斜坡 动力响应的试验研究[J]. 岩土力学, 2023, 44(9): 2566-2578.
[4] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[5] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[6] 王丽艳, 吉文炜, 陶云翔, 唐跃, 王炳辉, 蔡晓光, 张雷, . 格栅条带式加筋废旧轮胎胎面挡土墙 抗震性能试验研究[J]. 岩土力学, 2023, 44(4): 931-940.
[7] 张聪, 冯忠居, 王富春, 孔元元, 王溪清, 马晓谦, . 强震区软弱土层差异厚度下单桩动力响应振动台试验[J]. 岩土力学, 2023, 44(4): 1100-1110.
[8] 闫志晓, 李雨润, 王东升, 王永志, . 覆水砂土场地中桥梁群桩基础地震响应离心试验研究[J]. 岩土力学, 2023, 44(3): 861-872.
[9] 许明, 余小越, 赵元平, 胡家驹, 张潇婷, . 顺倾层状碎裂结构岩质边坡地震动力响应及破坏模式分析[J]. 岩土力学, 2023, 44(2): 362-372.
[10] 胡垚, 雷华阳, 雷峥, 刘英男, . 三向地震作用下叠交隧道地震响应振动台试验研究[J]. 岩土力学, 2022, 43(S2): 104-116.
[11] 刘斯宏, 李博文, 鲁洋, 沈超敏, 方斌昕, 杭丹, . 土工袋垫层抗液化性能振动台试验研究[J]. 岩土力学, 2022, 43(S2): 183-192.
[12] 郑森, 李伟华, 崔杰, 李亚东, . 刚度可调层状多向剪切模型箱的研制及性能测试[J]. 岩土力学, 2022, 43(S2): 616-625.
[13] 安军海, 陶连金, 蒋录珍, . 盾构扩挖地铁车站结构地震反应特性振动台试验[J]. 岩土力学, 2022, 43(5): 1277-1288.
[14] 冯忠居, 孟莹莹, 张聪, 赖德金, 朱继新, 林路宇, . 强震作用下液化场地群桩动力响应及p-y曲线[J]. 岩土力学, 2022, 43(5): 1289-1298.
[15] 郭明珠, 谷坤生, 张合, 孙海龙, 王晨, 刘晃, . 强震作用下含软弱夹层顺层岩质斜坡 动力响应规律试验研究[J]. 岩土力学, 2022, 43(5): 1306-1316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[2] 马 亢,徐 进,吴赛钢,张爱辉. 公路隧道局部塌方洞段的围岩稳定性评价[J]. , 2009, 30(10): 2955 -2960 .
[3] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[4] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[5] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[6] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .
[7] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[8] 张 凯,周 辉,冯夏庭,房敬年,张元刚. Biot固结理论中连续性方程形式的讨论[J]. , 2009, 30(11): 3273 -3277 .
[9] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .
[10] 殷 杰,高玉峰,洪振舜. 连云港软黏土的不排水强度试验研究[J]. , 2009, 30(11): 3297 -3301 .